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1 CATEGORIES

1 Categories

S 1.1, —A category C &I LAY :

a class of objects obj C

o sets of morphisms. H.H morphisms FHUA N HRAH: fTEE—NENTE A, B € C WK% Mor,
Morc (A, B) ##r1E the set of morphisms from A to B.

e composition:
Mor (B, ¢) x Mor(A, B) — Mor(A, C)

(9, )= gf
o —EXT Mor AR :
L. A Mor(A, A) AL E—ICHK ia
2. composition is associative ((fg)h = f(gh))
3. Vf e Mor(A,B), f=fia=ipf
4. Mor(A, B) 5 Mor(C,D) }i%¢ < A=C, B=D
H 1.2, R C EMXERHZ 4., TAMA A=A (A, f,B) K% f € Mor(4,B).

Bl 1. FATTAXTEE S, B, HENSELEWE, SRS 0 BIhE A RIS, B RS A A )
WITESEWLST, YT A RIAAH B IS 8] 1) 52 A
Bl 2. 255 C, the opposite category C? & X AlIF:0bj C = obj C”?, Morger(A, B) = Morc(B, A),

composition is reversed
1.3, TAAH, Mor(A,A) & —4 4 X8,
EX 1.4. f € Mor(A, B) is an isomorphism <= Jg € Mor(B, A) such that fg =ip, gf =ia.
1.5, TAELH, g & E—hY,
58 1.6. C Yy concrete category, HIRAFAER: AL obj C FAYMLE o (5
L 4R A € obj C, Ha o(A) B—MEE
2. fBf—~ f € Mor(A, B), #SH 17— function f from o(A) to o(B)
3. composition X} function composition

4. iy BT o(A) BERIBLg

£ 1.7. If C is a concrete category, I’ € obj C, F is called free on a set X with a injective function
p:X — 0(F) < VA € obj C and Y set map ¢ : X — o(A), there exists a unique morphism
f € Mor(F, A) such that fo¢@ = 1.

© F.P. (1800010614@pku.edu. cn) 1 2022 &
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i 1.8. If F, F' are free on X with ¢ : X — o(F), ¢’ : X — o(F"), then F and F"’ are isomorphic.

iERH. | free BIE X, ﬁ/—ﬁ:fEMor(F,F’), g € Mor(F', F) 5 o' = fop, p=goy', M o=gfep,
Jlig&I¥ sy

o(F)
%
X 9/
X
o(F)
T gf WA ERRECEME—R, Ho=irop, Ml ir=gf, [FH fg=1ip. O
X 1.9, % {Ai,i eI} 2% obj C FHIXT4, & X the product of A;, written
A=]J4

iel
@R : A is an object, together with morphisms m; € Mor(A, A;) Vi € I, satisfying VB € obj C, Vi, €
Mor(B, A;), there is a unique 6 € Mor(B, A) such that 6 o w; = 1;.

0

B
e
A

7 1.10. A E&AAFTRE

%X 1.11. The coproduct of A; is an A, together with m; € Mor(A;, A), and the diagram is commu-
tative with unique 6 € Hom(A, B):

6

=
A

Bl 3. SLEVEMEIBIMR B BRI E R RBIRITESOT
e 1.12. FEERE T BUATEEAR, RBUSHER B .
Bl 4. Abel BEEBERAUE EA, REVEEAM GRIT IS A i i)y Abel ).

EX 1.13. A (covariant) functor F' from C to D Z—/~M obj C F| obj D g%k, [FEHFH—
Morc (A, B) — Morp(F(A), F(B)), HifiZ

1. F(ZA) :iF(A)
2. F(yp) = F(Y)F(p)

£ 1.14. A contravariant functor from C to D is literally a covariant functor from C to D?.
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2 MODULES

Bl 5. C Z2IFHTENE, D 2 Abel FERYTENE, AR AE X F ook ERYEFEB . XA T R
T C1y—s: )5, R eR TFrA forgetful functor.

£ 1.15. A category C is called a small category if and only if obj C is actually a set.

E X 1.16. C is a subcategory of D if obj C C obj D and VA, B € obj C Morc(A, B) C Morp (4, B).

If the last set containment is always an equality, then C is called a full subcategory of D.

1.1 Appendix

X 1.17. A concrete category C is called uniform, if for all A € obj C, and bijective function
¢ :0(A) — S, there exists B € obj C such that o(B) = S, and ¢ is an isomorphism of A with B.

EH 1.18 (Pulltab Theorem). Suppose C is a concrete, uniform category. suppose A, B € obj C,
and f € Mor(A, B). Suppose that, as a map from o(A) to o(B), f is injective. Then there exists
C € obj C, as well as g € Mor(A, C), h € Mor(C, B), such that f = ho g, and

(i) h is an isomorphism of C' with B
(ii) 0(A) C 0(C), and g(x) = x, VY € o(A)

f

A——2DB

N b
C

2 Modules

2.1 Generalities

X 2.1, /5 R BTEBHEN r M, 45 R BTEBHEN Mg, R— S SUHHTEBHCN rMs.

il 2.2, 45 Aer M, Hom(A,+) &M g M B| sM B2 K+, Hom(-, A) 22— M F| Mg
B S PR T

‘Hﬁ 2.3. MS T’TVX?E‘{#( ZMs, SM T’TYX%‘{& SMZO

s 2.4. 7€ Abel #ERE (£ Z #) T, Ae Mg =,Mg, G j& Abel #f, H24 Hom(A,G) n[LAFE
it sM WITCER .

2.2 Tensor Products

X 2.5. A€ Mg,B € gM, A bilinear map from A x B to an abelian group G isamap ¢ : AxB — G,
satisfying Va,a’ € A, b,b' € B, r € R:

° QO(C% b+ b/) = 90(0'7 b) + (p(av b/)

« pla+d,b) = pla,b) +p(a,b)
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2 MODULES

o @(ar,b) = ¢(a,rb)

EX 2.6. — 4 FXF (G, ) Fih a tensor product of A, B, WIHXHTE Abel #f H, X1 2 AL
B0 Ax B> H, {et0e—— 0 ¢ Hom(G, H), 1t

Ax B [

G
H

y
%
i 2.7, [B5E B e pM, Il

1. Re B=DB

2. R T 2— AR, IB 2 B 1#, 4 (R/I)® B=B/IB

PERA. 1. % p(r,b) = rb, IXE—PIEMEREL, AMER ¥ RxB = G, %0 =1(1,), A 0op =1,
Bl (G, @) & tensor product,

‘ZEE 2.8. i,%ﬁﬂﬂ‘yxgé\ﬁ 791 *‘f“}"lﬂ:,fzal@bl — Zalbl =0= Z(h@bl = Z 1®(11b1 = 1®Z aibi =
0, MmmiZZ 245, miAd 2 2R,

XA R 932 T HFRm 2, B R—ZH IQBEB lx, ZAHA 1¢ 1, AmFEE
B Tikde a; A by 89 R 2

2. #% f: (R/I)® B — BJIB: f(a,b) = ab, WOAF thiscit B laAs (ki a 1270
MEH) . %5 f=0, WabeIB, Mlacl, XM axb=0, it Kerf =0, B f HRFEZ, M f
A o

2 IRIRATTI LS — Al A R A 2 IR R -

2. EX

¢ (R/I)x B — B/IB
(r+1,b)—~rb+1B
Sk ¢ T R E X

Hi 1. XS 7 x ip : R x B — (R/I) x B HUEEMNAMREL ¢« (R/I) x B — G WG, HIE

ME— 0 i1 00 p =1 o (m xip).

T X1
Rx B B

(R/I) x B
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2 MODULES

MMER be Byrel, H (Yo (mxip))(rd) =9(0,b) =0=(0op)(r,b), H1 1. F o WEL, A
(Bop)(r,b) =0(rb), NI rb € Kerf, B I C Kerf, X% 0 55T 0 : B/IB — G, X W2 M
—M.

T X1
R x B b

(R/I) x B

O

1 2.9, TUAFS 1. 9258 TAHES) R 948 209FIR, 1223 R 0493248 1 ZRMm by, B R—ER
I®BX~B, v R=27Zy, Bety32# [ ={0,2}, R B={0,1} =Z, (MFAZEX THHEHLIT AN
mAE), it IQ B=1, {2 IB 1k B ayF# % {0},

s 2.10. QR A e Mg, W A®R Eﬁ/\/\}\ rM F| Abel BEFITMER 5 R B € gM, A4 QB
&—MM Mg | Abel BERYHHAE

s 211, € A€ Mg, BiecgM, icl, | A® (®B;) 2 0(A® B;), H a® (&b) — ®a®b;).

iER]. BIIER] A® B; 78 Abel BEERE FTINRIN A® (0B;). 2 B =®B;, % ¢; € Hom(B;, B) &3
WL, XS IR T v A® B - A® B,

BEFRRFIE, WEE—4 v A® B — G, ffE—A 0, 5 FolEEcH:

L n:AxB— A® B RIS, FEA 9 Ax B - A®Bio W ¢on & AxB; =G
PRI PR (T ) S AR MR ) A2 A R ) o Do i oms iR RAE XY (X2 B ALE
AR 0 B ERAEHRA), X@— Ax B — G IARIEBRYS .

AXBZ‘

/ %%

A® B; *>A®B<—A><B
\ /{zonz

K BRIV, BEAEAEME——> 0 (75 T IR A
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A®B " AxB
9/5%'07%

IEHF @ ono(ia x @i)(a,b) =0 ona,bi) = (1 omi)(a,b) =3 ;o n;(a,b;) = ¥; oni(a,b;), M
M pion;=0o0mo(ia x @) =00 on, HT n 2SS, XEHH FREFEH:

G

AB 2% A B

N
AT 0 5 2 55 A

WA 0 AME—, XL 0 0 i = b, MM 0 0 (no(iax ;) =0 0(piom) = (0"0pi)omn =
Yiom; =0omo(ia x ¢;)

WA (a,b) € Ax B, Ax B i) BIEFRBGTH X iax o; it TG 6'on =0 ono(Siaxe) =
Y0 onoiax ;=Y 00mno(iax ;) ="00n, XK O WHHTE R

0

G

AoB< AxB
9/§%om

XHZEED 0 AT . O

H}}:fﬂ 2.12. ’fE%‘iﬁAEMR, BERM, G%Abelﬁi, IJ_I\[J

G

Hompg(B.Homyz(A, G)) = Homz(A ® B,G)

iEf. id Bil(A, B;G) & A x B — G WITA MM R B B #E. e L, Homz(A ® B,G) =
Bil(A, B;G).

ifi Bil(A, B; G) = Homp(B.Homgz(A, G)) T DA LA R 55 -
{maps : A x B — G} <— {maps: B — (maps : A — G)}

feg
f(a,b) =[g(b)]a

AT H B IO RS B 1 R e . O

Rotman % H XA~ ainal iR E) A -
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2 MODULES

P 2.13 (Adjoint Isomorphism, First Version). Given modules A € My, B € Mg, C € Mg, there

is a natural isomorphism:
Homg(A ®r B,C) =2 Hompg(A,Homg(B, C))

EH 2.14 (Adjoint Isomorphism, Second Version). Given modules A € RkM, B € sMgr, C € sM,

there is a natural isomorphism:

Homg(B ®gr A,C) = Hompg(A, Homg(B, C))

2.3 Exactness of Functors

X 2.15. The arrows

will be called exact if Kery = Ime.

X 2.16. The short exact sequences is like
0A5B5C—0

£ 2.17. We say that a short exact sequences splits if B is the biproduct of A and C.

i 2.18. % X1, X, € obj C, the biproduct of X1 and X5 is X € obj C, satisfying

p1 D2
X1 sSXaZX,
15 l2

proly =ix,, pala =ix,, liopi+lyopy =ix.

P 2.19 (5-Lemma). {BGEACHEFE

A, h As f2 As f2 A, fa As
®1 ®2 ©3 P4 ©s
B 91 B, g2 Bs gs B, 94 B.

L. o Fl @y 2[RI
2. 1 ST
3. s s BT

W2 o3 2T

PER. MR p3(a) = 0, ABA @so0 f3(a) = g10@s(a) = 0. BT 4 2, MM fi(a) = 0, P
a € Ker(fs) =Im(fz), MIMFFLE o’ € Az, fa(a') = a. T g2 0 pa(a’) = w30 faa') = p3(a) =0, MM
@2(a’) € Ker(gz) = Im(g1), BIFFTE b € By #i15 g1(b) = @a(a’) BT @1 BWHS, MMAFE o 15

© F.P. (1800010614@pku.edu. cn) 7 2022 &
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er(a) = b, M 920 f2(a") = 910 or(@”) = s 0) = pa(a). F 0o K, I o' = fu(a"). st
i @ = fo(a) = f20 fila") = 0. B oy RIS,

W b€ By, M gaogs(b) =0, B gs(b) = pao(a), A 0= gs0gs(b) = gaopa(a) = w50 fi(a)s
BT o5 28, WM fa(a) = 0, B a € Ker(fs) = Im(fs), BIFEAE o 15 fs(a') = a, MM
gs o p3(a’) = @a0 f3(a') = pu(a) = g3(b), X b — @3(a’) € Ker(gs) = Im(ga), BIfFHE V' € Bs
153 g2(b') = b— ps(a’)e BV = @a(a”), MW 50 fo(a”) = g2 0 pa(a”) = ga(V') = b—s(a’). MIfi
b=3(a’ + fo(a”)) € Im(ps). B 3 Wik O

S 2.20. EXF 22— rM 3| Abel BEEBEMERR T F% F RRIEGER T, GERIMER nM H
HEIEAFH 0 —A—B—C—0#4# 0— F(A) — F(B) = F(C) — 0 1IE£4.

WRIE 0 = F(A) — F(B) — F(C), WFCAZIES; WRH F(A) — F(B) —» F(C) =0,
WFAHIE G AERIUE F(A) = F(B) = F(C), AR LS.

S 2.21. MR T, WA PAZUE L E X F @— M rM F| Abel BEJEBGHI LR o FR F
RIEAR T, MR oM PREESTH 0+ A - B - C - 0#40— F(C)— F(B) -
F(A) — 0 IEA. HaE O PARBISEE

S 2.22.

1. R A e gM, #32 Hom(A,-) 1 Hom(-, A) BAEAR.

2. IR A e Mg, 4 A2 BHIEEGH.

ER. 1. %
0BS5S B 5B -0

0 — Hom(A, B) ©% Hom(A, B') LN Hom(A, B")

LGP,

WER f € ker(ox), A Va € A, o(f(a)) = @*(f)(a) = 0, B f(a) € Ker(p), B f(a) =0, Va € A,
B f = 0. MIfii ox ZHF, BJ 0 — Hom(A, B) — Hom(A, B) ZIEAHY.
(a

SHERE f € Hom(A,B), £ ¢« (¢ (f)(a) = (e (f)(a) = ¥(p(f(a)) =0, Va € A, MTfi
Im(px) C Ker(y*). MAMER g € Ker(vx), SR a, ¥(g(a)) =0, MIfi Im(g) C Ker(¢) = Imep.
T o G, MM E XA Im(p) ARG o, IS f=¢ log: A— B, f o*(f)(a) =
o(f(a)) =g(a), Bl g € Im(px*), MM Im(p*) = Ker(ix),

Hom (-, A) BB (ERERRERT).

I 2.23. TAFE], P HKAE @ HHT LM, ARTAWEAEOBS B 5B F
IERA
2. %
0BS5S B 5B >0
IE/‘\T”@J, /\ﬁ‘ﬁl Eﬁ
A®B—>A®B’ S A® B =0

© F.P. (1800010614@pku.edu. cn) 8 2022 &
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LA,
o LA
Hom(A, Hom(B, G)) <% Hom(A, HomB’, G) LN Hom(A, hom(B”,G)) — 0
LGS, G RALE Abel #f.
MIMTH2.12, 47

Hom(A ® B,G) 25 Hom(A ® B/, G) X% Hom(A® B”,G) = 0

BTSN 1. AR 2800 T A1 | B T
518 2.24. 41 0 — Hom(4, B) < Hom(4, B') s Hom(A, B") RIE&FFHI, 4 0 — B 5
B' Y5 B RIEAFA. X T Rk

SIFRAIERA R 1. JEEAHALL:

W o(b) =0, AL A= (b) C B, 4 p(A)=0, X aecA, I ¢x*(ia)(a) = p(ia(a)) =
@(a) =0, MM ia =0, XFH ia(b) =b=0,

Bbe B, #(pb) # 0, IAHLA = (b), B (0 (ia))(0) = (0 (ia)(b)) = P((ia(b))) =
W(p(d) #0, FJF. MM (p(b)) =0,Yb € B, %X Im(p) C Ker(v).

HUA = Ker(1h), M2 ¢ (ia) = 0, Wil ia € Im(px). 8 @5 (f) = ia, B4 o (f)(a) = ia(a) =
a,Va € A, ZHEW o(f(a) =a, Bl AC Im(p), Mili Ker(y) = Im(e). O

2.4 Projectives, Injectives, and Flats

E X 2.25.

1. A€ gM, A is projective if Hom(A4,*) is an exact functor.
2. A€ gM, A is injective if Hom(s, A) is an exact functor.
3. A€ Mg, A is flat if A® is an exact functor.
#l 6. R is projective because Hom(R, B) = B via f + f(1); and R is flat because R ® B = B.

iF 2.26.  4RIE2.22:

o P RBAHYE AR Y ESS) BSC—0 A& feHomp(P,C), HRHEAL

P
9,
% f
<P
B C 0

e WE ZNHELEAMMLENFESLS 0> AD B A fecHomg(AE), A x#Bi

© F.P. (1800010614@pku.edu. cn) 9 2022 &
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i 2.27. g R—EE—,

IJA

2.28.

=4

o R Ai € pM, W @A; BB BACLEA A; HOZ B

o Bk A € pM, W ITA; NSRS HACS RS A H2E TR

o R Ai € Mp, W ©A; ZFHFY HACY 84 A, #Z AL
iR 2.29. H HBCZBUPBNITIHEL
el A R BFEWT ok, XH R ADHR. O
i 2.30. f4> A € pM HLZ— MBI RTBU T A

FERA. RS A ESRE A TTEAE R A BRI O
% 2.31. WIR P € g M, B4 P 235ty BARY IR A S P 2w, T84 P2 A BIEF.

B R PR, AR ATE R KR

P
g- .
7 ip
A d P 0
H A=1Im(g) ® Ker(¢) H Im(g) = P.
Rz, HIE AR PEHBEL, I AR, BB R B AR 2 B O

He® 2.32. P € rM is projective if and only if every short exact sequence 0 - A — B — P — 0
splits.

i 2.33. REAEBURELELZ A H B ELANIL
i 2.34. BRI P € Mp A2 FHHEL

5[ 2.35 (Baer). % E € g M, W E 2NHEEY HACYERE R WA I ) f € Hom(I[, E),
fE1E g € Hom(R, E), {{if§ goi; = f.

© F.P. (1800010614@pku.edu. cn) 10 2022 &
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JER. = QIR E RS, WHT 0 1 — R ZEAEY, IRAmRIE2.26, XFERY g RAFLER

< HEMMEEWIEAS 0 - A 5 B, K f € Hom(A, E), iEWffE g € Hom(B, E) ffif3
gop=r,

AT Zorn 5B, HIEFFA (B g') fifF p(A) C B'C B, Hypog =f

0 A B’ B

KPR (B, o) RAFTERT, A (p(A), fo= ') WS HE (B, ¢') > (B",¢") M HMY B C B’
Hglpr =9", Z—MwrxXE, HiZwyEG MG LR, B Zom 518, ZEGIHERITT
(B',g"), HAMER HRKITCRME—T.

Wk B # B, MWLM v € B, x9 ¢ B', 4 I = Anng/p (o) (Xo BT ), W T2 R KA
8.

Figs [ 1 — B, J(r) = g'(rao), SABSTURIIE g: R » E. 4 B = B + Rag, %
g"(b+rw0) = g'(b) + g(r), g" JERIENLM. HLHT (B",g") > (B',g), FIf. O

& 2.86. Suppose R is a PID, and suppose E € gM has the property that rE = E for all r €
R,7 # 0, then F is injective.
. [ =(r), fr)e E=rE, & f(r) =ra, AT PAI g(z) = za,Vz € R, O

flii 2.37. R 2 PID, R #yr2Us2 N R .

¥ 2.38. FE is called divisible if rE = E whenever r is a right nonzero divisor in R (that is, Va €
Rar=0=x=0).

7 2.39. oR R & PID, ZANTAR2.56i&dH — A3 NaT4E: 8 A e gM, it A 2ma9 8 it
F=@R, B A=F/K.4 Q% Rty XK, Q &AM, TI#HAN A= (BR)/K — (8Q)/K £ E,
HAVreRr#0, rE=(®0rQ)/K =(@®Q)/K =E, @ E % N4tH.

ik 2.40. QIR R 2 PID, IEafEN A € pRM FATARA— > IGTHE,

AL 2.41. X —REE R, WATRAMARE G BE A € Mg 2L, H G e oM 25, T
2, Homy(A, G) & M Figp 5.

e, % 0—- B —-C — D — 0 14, k4

0A®RB—>AQRC - A®D —0

0 —- Hom(A® D,G) - Hom(A® C,G) - Hom(A® B,G) — 0

0 — Hom(D, Homy(A, G)) — Hom(C, Homyz(A, G)) — Hom(B,Homyz(A,G)) — 0

1. XAUF Homz (A.G) J2& I O

© F.P. (1800010614@pku.edu. cn) 11 2022 &
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2 MODULES

i 2.42. XMER A € g M, BAGFENI E € kM FH[ES A — E,

B FIE A MEH Abel B (BRI Z Zcf%), 1240, f#7E Abel B G i1 A 7IPARA G H G 24
B FATA

A = Hompg(R, A) C Homz(R, A) C Homgz(R, G)
il Homz (R, G) j2 AL O

findi 2.43. E is injective if and only if E is an absolute direct summand, that is, E is a direct summand

of any module having E as a submodule.

B IR B AR TEIRA ¢ E — B, 84 ip AIDARTIE] g B — B, RIS E %R

0 E« E'
g
E
) Im(g) ® Ker(g) = E', i Im(g) = E, M E & EFIi. O

EX 2.44. R is called left Noetherian if every left ideal is finitely generated.

EH 2.45. Bass-Papp] R is left Noetherian if and only if every direct sum of injectives in M is

injective.

Hom(I,®FE;), BT ¢;(ar) # 0 B j 2 FGREY, MM N F-ih ¢5(ar) = 0,5 > N,Vk € [1,n], AJ
o(I) C & E; =11 By, 11228, IL By & NP, AT 30k 3

0 I R

oL;

ML ¢ $HETHE R — @F;, |H2.35, 151 oF; 2N,

AR R ARAEVERIR, WA ks st L c L. i I=U ", 1., % E, 28
& 1/L, WNSHEHA RS ¢, /1, = E,, Xt axel, @Y o(x)=dp,(z+1,), \IAREL ¢ BUE
1 oF, H.

gn(2) = p(x + I,) = £9,(1),Vo € I —I,,, W24 gn(x) #0 MITA g.(1) # 0. XKW g(1) ¢ OF;. O

i@ 2.46. E € r M is injective if and only if every short exact sequence 0 — E — B — C' — 0 splits.
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X 2.47. Let M and E be left R-modules. Then E is an essential extension of M if there is an
one-to-one R-map o : M — E with SN a(M) # 0 for every nonzero submodule S C E. If also
a(M) C E, then E is called a proper essential extension of M.

fird 2.48. A left R-module M is injective if and only if M has no proper essential extension.
+ERA. If M is injective but there exists a proper essential extension E of M, then M is a direct
summand of F and suppose E = M & M’. But we have M’ N M = 0, a contradiction.

If M is not injective, then M is not an absolute direct summand, hence there exists M C E such
that M is not a direct summand of F. If E' is not a proper essential extension of M, that is M NS =0
for some S C E is a submodule. By Zorn’s lemma, we can make S be the maximal satisfied the
property. If there exists x ¢ M + S, then (S + (x)) N M = 0, a contradiction, so M + S = E, hence
E =M & S. Therefore, E is the direct summand of F, a contradiction. O

HE 2.49. Given M € pM, the following conditions are equivalent:

1. F is a maximal essential extension of M; that is, no proper extension of FE is an essential extension
of M

2. F is an injective module and FE is an essential extension of M

3. E is an injective module and there is no proper injective intermediate submodule E’, that is,
there is no injective £’ with M C E' C E.

X 2.50. If M is a left R-module, then E containing M is an injective envelop of M, denoted by
Env(M), if any of the equivalent conditions in 2.49 hold.

P 2.51 (Eckmann-Schopf). R-#[E[#) T Env(M) fRFEEAZE,

2.5 Exercises

1. Suppose only that A is a coproduct of A; and A, in g M, that is,
A FL A S A,

makes A into a coproduct of A; and A, in gk M. Show that there are unique m; : A — A; making A

into a biproduct, using only the properties of a coproduct.

#ERA. 7 arises as a filler for

The construction of w5 is the same.
And then i4, om; 0@; = iy4,, we only need to confirm ¢ 0i4, 0m + 2 0i4, 0T =i4.

Let ¢ = 1014, 0 + 2 044, 079, ¥ 0w; = @;, so ¢ is the filler for
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©1 2 Ay

»1 P ()

A
A

But i4 also makes the diagram commutative, this induces ¥ =i4. O

2. Suppose
0-A5B5LC—0

is exact, and suppose 1 : C — B satisfies m 0 ) = ic. Show that this sequence splits.

1ERf]. Since Vb € B, b=0b—1on(b)+ 1 on(b) € Ker(n)+Im(y), and Ker(7) NIm(y)) = {0}, we have
B =Ker(m) @Im(¢p) = Im(p) @ Im(yp) = A Im(yp) = A C. O

3. Show that Hom(A,IIB;) = ITHom(A, B;) and Hom(®A;, B) = ITHom(A4,, B)
1E8]. Let m; : IIB;, — B, denote the projection, then we can induces a homomorphism
® : Hom(A,IIB;) — IIHom(A, B;)
(f) = (mio flier
O(f)=0=>mof=0,Viel= f=0,s0 P isan isomorphism. O

4. Suppose B € gM, and 1 is a right ideal. Show that the obvious map from I ® B to IB is always
onto. Suppose it is not one-to-one. Show that there is a finitely generated right ideal J C I such that
J ® B — JB is not one-to-one.

iE#]. Obviously we have 7 i; ® bj = Y 7, i;b;, so the map is onto.

If it’s not a one-to-one, there exists an nonzero element Z?Zl i; @bj — 0, let J = (i1, -+ ,i,) is

finitely generated right ideal, then J ® B — JB is not one-to-one. O

5. Suppose F' is an exact covariant functor from M to Abelian groups. Show that F' sends any exact

sequence A — B — C' to an exact sequence F'(A) — F(B) — F(C).

iER]. Let K denote the kernel of B — C' and L the kernel of A — B. We get the diagram

L
;
0 I£' B C
;
with exact row and column. Applying F' and using its exactness yields the result. O
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6. Show that any injective module is divisible. Also show that if a is a right zero-divisor, and if R is

a submodule of F, then 1 ¢ aF (even if E is injective).

1E8]. Let E denote the injective module. If » € R is a right nonzero divisor, then 0 — Rr Zs Ris an

exact sequence. Hence there exists a g, : R — E such that g, o ¢ = f,, fz(z € E) denotes the map
fe:Rr— F

tr—t-x

it’s well-defined because r is a right nonzero divisor. Then z = f,(r) = g.(¢(r)) = g(r) = rg9.(1), so
Vo € E,x € rE, this shows that £ =rF.

If a is a right zero divisor, and if R is a submodule of E € pM, we can assume ra = 0,7 # 0,

then1 € aE = r=r-1=rae =0, it’s a contradiction. O

7. Suppose P € pM, and suppose a filler g exists for any diagram

P
g
K f
E———C 0

when FE is injective. Show that P is projective.

JEf]. Given A 55 B — 0, we can imbed A in an inective module E. Let j denote the map F —
E/Ker(r), then for any f € Hom(P, E/Ker(r)) there exists g € Hom(P, E) such that jog = f. Since
E is injective and ¢ : A — E is one-to-one, so there exists ¢’ € Hom(P, A) such that pog = g. We
have mog' = jlao(pog’) = f, so we conclude there exists ¢’ € Hom(P, A) for all f € Hom(P, B). O

8. Let R denote the ring of continuous functions from the real ling R to itself which are periodic with
period 7, that is, f(x + 7) = f(x) for all . Let P denote the continuous functions from R to itself
for which f(x +7) = —f(x). Show that P& P = R® R, so that P is projective. Show also that P is

not free.

iER]. If (f,9) € R® R, then fsinz + gcosz, fsinx — gcosx € P. Similarly, if f,g € P® P,
fsinz+gcosx, fsinex —gcosx € R. So P® P = R® R. Then P is a projective R module.

If P is free, then P = @R, then @;c;/(R® R) = R® R, it’s impossible unless P = R. O

X 2.52. If G is a divisible Abelian group, then G will be referred to a coseparator if G contains an

element of order p for every prime p.

9. Suppose G is a coseparator and 0 # h € H € Ab(the category of Abelian groups). Show that
there is a ¢ € Homgz(H, G) for which ¢(h) # 0. (An injective coseparator in Ab is usually defined as
an Abelian group G with this property).
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iEB. 0 — (h) — H is an exact sequence, obviously there exists f € Hom((h),G) such that f # 0
because of coseparator, then there is a ¢ € Hom(H, G) such that g|,) = f, hence p(h) # 0. O

10.[Partial converse of 2.41.] Suppose G is a coseparator, A € Mg, and suppose Homy(A,G) is
injective. Show that A is flat.

1E8f. For all exact sequence
0-B5CcS D=0

, we can obtain another exact sequence
0 — Hom(D,Hom(A, G)) — Hom(C,Hom(A, G)) — Hom(B,Hom(A,G)) — 0

, then
0 — Hom(A® D,G) % Hom(A® C,G) 2 Hom(A® B,G) — 0

is exact.

Then we show that
02 A®B A0 A9D -0

is exact.

By using the right exactness of A®, it suffices to show that 0 = A® B 5 A® C is exact, that

is equivalent to ¢* is one-to-one.

For all nonzero > a; ® b; SheA® B, there exists f € Hom(A ® B, G) such that f(b) # 0 by
the last exercise. Since @ is onto, there exists ¢ € Hom(A ® C, G) satisfied the property ®(g) = f, i.e.

f =goex Hence f(b) # 0= px*(b) #0, i.e. Ker(px)={0}. O

11. Suppose A € Mg. Show that A is flat if and only if A ® I — AI is one-to-one for every finitely
generated left ideal I.

e8], If A is flat, then 0 - A® I - A® R = A is exact, and we have Im(I — A) = AI, then
A® I — Al is one-to-one.

If A I — Al is one-to-one for any finitely generated left ideal I, since it’s onto, then we obtain
a isomorphism A® I = AI, and we can get rid of the requirement "finitely generated” by the exercise
4.

For any f € Hom(/,Hom(A,G)) =2 Hom(A ® I,G) = Hom(AI,G)(G is a coseparator), since

G is injective and 0 — Al — A is exact, there exists ¢ € Hom(A,G) = Hom(A ® R,G) =
Hom(R,Hom(A,G)) such that g|; = f, then Hom(A, G) is injective by Baer’s theorem. Hence A
O

is flat by the last exercise.

12. Suppose R is a PID, Show that A is flat if and only if A is torsion free; that is ar = 0 = a
0orr=0 foraec A, r € R. Hence, show Q is a flat Z-module.

1E8f. Using the last exercise, we conclude

Ais flat & VreR, Ao () 2Alr) & Y ar=0=Y a@r;=0)
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If Ais flat, we havear =0 a®r=0&a=0o0rr=0.

If A is torsion free, let >.1"  a;r; = > (ajt;)r = 0. We have >." a; @r; = > a; Q t;7r =
Zajtj®r:(2ajtj)®r:0. O

iF 2.53. &R 5 —F F02.809 % B ARILE, X BT VAME] A a9 45 m AR R VA,

13. Suppose R and S are rings, A € Mg, B € RMg, and C € gM. Then A ®r B € Mg and
B ®g C € M. Show that A®r (B®sC) 2 (A®r B) ®s C.

1E8]. We have the natural map a ® (b®c) — (a®b) ® c. O

14. Suppose we have a commutative diagram

in pM with exact rows. Prove that:
a) If n and ¢ are one-to-one, then so is 9.

b) If n and ¢ are onto, then so is 1.

1R, a) If ¢(b) = 0, then ¢(w(b)) = 7'(¢(b)) = 0. Since ¢ is one-to-one, we have 7(b) = 0, then
b € Ker(m) = Im(j). Let j(a) = b, then j'(n(a)) = ¥(j(a)) = 0, then a = 0 because 1 and j' are

one-to-one. Hence b = j(a) = 0. Hence v is one-to-one.

b) For any V' € B’, there exists ¢ € C such that ¢(c) = n/(V’) because ¢ is onto. Since 7 is onto,
then ¢ = 7(b) for some b € B. Hence 7/(¢p(b)) = ¢(mw(b)) = n'(V'), i.e. b —(b) € Ker(n') = Im(j').
Hence & — 4(b) = j'(a’) for some o’ € A’, and o/ = n(a) for some a € A because 7 is onto. Since

Y(j(a)) = j'(n(a)) =b" —(b), we obtain v/ = ¥ (j(a) + ¢ (b)) € Im(¢)), therefore ¢ is onto. O

15. Suppose A €5 Mg, B € gM and C € ¢M. Then Homg(A,C) becomes a left R-module, and
A ®p B becomes a left S-module. Prove that Homg(A ® B, C') = Hom(B, Hom(A, C)).

1E8f. The proof is similar to 2.12. O

16. Suppose R is a PID, and a is a nonzero non-unit in R. Show that R/Ra is an injective module

over itself.

£, For any I C R/Ra, I is principal ideal, let I = (b). Since a € (b), we have a = bt for some t € R.

For any f € Homp g, (I, R/Ra), we have tf(b) = f(tb) = 0. Let ¢ denote f(b), we obtain tc € Ra,
i.e. tc = as = tbs for some s € R. Hence we have ¢ = bs. Now we can extend f to g : 1 FR/Ra 5,
g(bd) = dbg(1) = dg, so g|; = f.

Then R/Ra is injective by Baer’s Theorem. O
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2.6 Something about Flat Modules

Exercise 11 gives us

EH 2.54. Suppose A € Mp. A is flat if and only if A ® I — AI is one-to-one for every finitely
generated left ideal I.

A8 2.55. Let 0 > K — F % A — 0 be an exact sequence of right R-modulkes in which F is flat.
Then A is a flat module if and only if K N F'I = K1 for every finitely generated left ideal I.

1ER]. Wehave K Q1 - F®I - A® I — 0 is exact since ®I is right exact.

We can define v : A® I — FI/KI, given by ¢(f) ® i — fi+ KI, where f € F, i € I. The
homomorphism is well-defined, if not there exists > o(f) @i = > p(f) @i’ gives > f'i' + KI #
> fi+ KI, hence there exists > ¢(f) ® i =0 but > fi ¢ KI, we have ) f®1i € Ker(p ® iy) =
Im(K®I—F®I),set > k@i Y, f®i, hence Y ki= )" fi € KI, a contradiction.

YR
K®lI Fel AT 0 0
0 o’ 0
KI FI FI/KI 0 0

Since 6 is onto, and @’ is isomorphism, 5-lemma gives us 7y is isomorphism.

Suppose 0 : FI/KI — FI/K N FI viaz + KI — x4+ K N FI, we have Ker(o) = KN FI/KI.
Thus A® I/ker(c) = FI/K N FI. But ¢(FI) = AI infers that FI/ker = AI, and obviously the
Ker = K N FI by the exactness, hence A ® I/Ker(c) = AI. Then A is flat if and only if o is
isomorphism if and only if FIN K = K. (|

S8 2.56. Let 0 - K — F — A — 0 be an exact sequence of right R-modules, where F is free
with basis {z; : j € J}. For each v € F. define I(v) is the ideal by the coordinates of v, that is, if
v=>" x;r €F, r;, € Rthen I(v) = (r1, -+ ,7) C R. Then A is flat if and only if v € KI(v) for
every v € K.
1E8]. A is flat if and only if KN FI(v) = KI(v).

If A is flat, then v € K N FI(v) = KI(v).

If v € KI(v), for any left ideal I, let v € K N FI, then I(v) C I, hence K N FI C KI. Hence
KNFI=KI. [

B 2.57 (Villamayor). Let 0 - K — F — A — 0 be exact, where F is free. The following

statements are equivalent:

1. Ais flat
2. For every v € K, there is an R-map 0 : F — K with 6(v) == v

3. For every vy, -+ ,v, € K, there is an R-map 0 : F — K with 6(v;) = v; for all ¢
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2.7 Purity

EX 2.58. An exact sequence 0 — B’ — B — B” — 0 of left R-modules is pure exact if, for every
right R-module A, we have exactness of 0 > A B’ - A® B—~ A® B” — 0.

EH 2.59. A left R-module B” is flat if and only if every exact sequence 0 — B’ —+ B — B” — 0 of

left B-modules is pure exact.

EM. BCAMER ST Tor 5455, T Tori(A,B") > A®B - A®B —» A® B" — 0 2IE4
), M EAL. O

3 Ext and Tor

3.1 Complexes and Projective Resolutions

£ 3.1. For a sequence A 4B C, it is called a complex if 0 od = 0.

& X 3.2. The homology of the complex is defined to be the quotient Ker(9)/Im(d).

£ 3.3. Suppose

commutes, with rows are complexes. Set H = Ker(9)/Im(d), H' = Ker(9")/Im(d"). We can now
define a homomorphism from H to H' via ¢ * (z + Im(d)) = ¢(z) + Im(d’). This ¢* is well-defined.

X 3.4. If there exists another ¢, 1), 1’ yields %', a homotopy is a pair of maps D : B — A’ and
A:C — B satisfying ¢p — ' =d oD+ Ao 0.

We have the diagram (obviously noncommutative)

A4 50 C
D
oll¢ (UNE" nin
A/ d, BI 8/ C/

G BEFEME R B a4

i 3.5. If a homotopy exists, then % = ¥«', since () + Im(d) = ¢'(x) + d o D(x) + Ao d(x) +
Im(d') = ¢/(x) +d o D(x) + Im(d') = ¢/(x) + Im(d') when = € Ker(0).
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X 3.6. Suppose B € rM, a projective resolution of B, denoted < P,,d, >, is an exact sequence
of R-modules

dn dn d
i P P PSP B0

going off to infinity to the left, in which all P, are projective.

fid 3.7. Any left R-module has a projective resolution.

i—‘EB}:]- EE2307 ﬂ%ﬁ@ﬁﬁﬁﬁ Pn+1 ﬁﬁ%‘ dn+1 : Pn+1 — Ker(dn> %ﬁﬁrj‘o O

e 3.8. Suppose B, B’ € M, and ¢ € Hom(B.B'). Suppose < P,,d, > is a projective resolution
of B, and < P),d, > is a projective resolution of B’. Then there exists filler ¢, € Hom(P,, P))
making

dn+1 dn d
Py P, - P——P—"—B 0
| o1 ' Pn 1 %0 ©
Lo Ly Lo B ,
PT/L+1 = P/z - T | ' Pé T B’ 0

commutative. Further, if ¢/, € Hom(P,, P) also serve as fillers, then ¢,, and ¢/, are homotopic, that
is, there exists D,, : P, — P); (with D_; = 0) such that ¢, —¢|, =d; ,, 0D, + D,_1 0d,.

iEB]. If o, -+, ¢, has been defined, note that d), o ¢, 0 dpi1 = @p_1 0d, od,y1 = 0, we have

Im(¢, 0 dyt1) C Ker(dy,) = Im(d;,, ;).

Since P, 1 is projective, then there exists a filler 4, for

Pn+1
7/

s
’

7/
Pn+1,” Pn © dnJrl
7/

’
L

1 - Im(d;, 1) —— 0

n+1

It remains to show any two fillers are homotopic.
Note that 7’ o g = p om = 7 0 ¢, we have ¢ — ¢, take values in Ker(n’) = Im(d}).

Let Dy be the filler for

s /
D(/)/ SDO - SOO
,
,
v

Pl —— Im(d)) —— 0

dy

If Dy,---, D, have been defined, and we have ¢, — ¢;, = d;, D, + D,_1d,, so that
U

dln+1 © (‘Pn+1 - 90;L+1 —Dyo dn+1) = (‘Pn - (IO;’L - dn+1 © Dn) odpy1 =Dy 10dyodyyr =0
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Then Im(pp41 — @), 41 — Dn 0 dnyr) C Ker(d,, ) = Im(d),,), we can denote D,, as a filler for

PnJrl

’

, /
D1, P+l — Ppy1 — D, odpia

X 3.9. Let A € pM. For any projective resolution of B, we have a complex sequence

_>A®Pn+1 1AQdn 41 A®Pn 1ARdy, —)A@Pl iAQd1 A®P0 A®dy 0

Let Tor,, (A, B) denotes the nth homology of this complex, i.e. Ker(A® d,)/Im(is ® dp11).
1 8.10. X ¥ dy Tk 7, fx 0. TAFFZEMFT A B.
i

i 3.11. Up to isomorphism, the homology is independent of the choice of projective resolution.

1E8f. Using 3.8 twice, we have

Py g Pt . p T .p 0
Pn+1 Pn ¥1 ¥o B
P Ay P dy, P! dy P, m’ B 0
(s} Vn (A o ip
Poiy o p M p T . p 0

Then 4, o ¢, is homotopic to ip_ , so the homomorphism between the homological groups (is ®

©n) *0(ia ® 1y )* = identity. Then the nth homological groups are isomorphism. (|
i 3.12. Tor,(A,+) is a covariant functor from rM to Ab. Also this functor is addictive.
. FELE, X ¢ € Hom(B,B'), #5537 A® ¢, € Hom(Tor(A, B), Tor,(A, B)). O

find 3.13. Tor, (-, B) tig— ik 1, $F%L b, X f € Hom(A, A"), FATHZHIEE

ia®d, A Rd, ia®d ia®d
e A®P, AT AP, 2 AP 2" Aep, 270
[®ip,,, [®ip, f®ip, [ ®ip,
Ta Qdy tar @dy g ®d ta®d
. 4)A/®Pn+1 A%‘FIA/®P’”‘ A e A/®P1;)A/®PO A*PO

#ic [ ¥ Tor, (A, B) 3| Tor, (4, B) WIFAZA Tor,(f, B) (KEIHIINRCS A (f @i, )*) .,
W24 Tor(f, B) AT B BB fRRTERE .
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X 3.14. If C € rM, apply Homp(+, C) to the chosen projective resolution of B, yielding

(dnt1)*2Hom(dn11,0) Hom(d1,C) Hom(do,C)
N lats s

-+ < Hom(P,41,C) 0

Hom(d,,C) + --- Hom(FPy, C)
with Hom(B, C') deleted as before. This is also a complex, the nth homology of it is called Ext" (B, C).
& 3.15. 5 Tor s FRHILHIMLL, Ext o5 AMHEE T 0 R ZEIL

s 3.16. If Ae Mg, B e pM,C € pRM, then

1. Torg(A,B) 2 A® B
2. Ext’(B,C) = Hom(B, C)
3. Tor,(A,B) =0(n > 1) if A is flat or B is projective
4. Ext"(B,C) = 0(n > 1) if B is projective or C' is injective
1E8]. 1. Since A ® - is right exact, then we have exact sequence
1AQ®dy

AP &2 Ao Py 427 A9 B« 0

Hence Torg(A, B) = Ker(A® dp)/Im(A®@d)) = A® Py/Ker(A@m) 2 Im(A®7) = AR B.
2. The proof is similar to 1.

3. If Aisflat, then A®Q P,y; - A® P, - A® P,_; is exact since A® is an exact functor. Hence
Tor, (A, B) = 0.

If B is projective, then
o= 0=--=0—-B—=-B-=0

is a projective resolution of B. Applying A® and deleting the A ® B we have sequence
-=>0—=--—=0—-2>A®B—0

Hence Tor, (A, B) = 0 for every n > 0.

4. The proof is similar to 3. O

3.2 Long Exact Sequences

EX 3.17. A chain complex will denote a complex C =< C;,d; > of Abelian groups, with d; : C; —

C;_1 and with i coming in from oo.
~-~%Ci+1—>Ci—>Ci_1 —

X 3.18. A cochain complex < C;,d; > is a complex where 9 : C;_; — C;. We can get a chain

complex by replacing ¢ with —i and adjusting rhe subscript of 0.

X 3.19. If C =< Cy,d; > and C' =< C},d, > are chain complexes, then a morphism ¢ =< @; >

1)

from C to C’ is a sequence of homomorphism ¢; : C; — C! such that
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d;
Ci Cif 1
Pi ©}
d
C; iy

commutes. A morphism of chain complexes is called a chain map. Then we get a definition of the

category Ch. The nth homology H,, is now a additive covariant functor from Ch to Ab.
£ X 3.20. A short exact sequence of chain complexes
0-Cc5e B =0

is a communitative diagram

l Lo,
0 C; P C! v v 0
d d d!
0 Ci_1 L 02_1 i Cz” 1 0
! !

with every row is exact.

P 3.21. Suppose

0-CHc 5o
is a short exact sequence of chain complexes. Then there is a sequence of maps 6,, : H,(C") — H,_1(C)
such that

%Hn-i,-l(cll) Ont1 Hn(C) Hp(p) Hn(c/) Hy () Hn(C//) 5L>

is exact. The maps §,, are called connecting homomorphisms. The sequence of maps is also natural,
in that if

0 C L c’ v c” 0
f g h
R IO I
0 C C/ C// 0

is commutative (in Ch) with exact rows, then for all n,

n

C—— H,(C") H, 1(C) — -
H,(h) H, 1(f)
. On .
—— H,(C") H, 1(C) — -+
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commutes.

EIL ARG 0. BYE .

l l l
0 C, o Y 0
d d "
0 ooy I o 0

e, HareKer(d)). BT v, W, NITAFTE y € C), 15 ¥n(y) = o, T2 dn1(d,(y)) =
dp(Yn(y)) = dy(z) = 0, B d,(y) € Ker(¢—1) = Im(pn-1), BT @n1 EY, MIAFTEME—RY
2 € Croy W15 noi(2) = d,,(y), 2=0,1(d,(y). ic

6, Hy(C") — H,,—1(C)
6p(z +1Im(d), ) = z+Im(d,)

B IORGEILP AL
(1) z+TIm(d,) ARAE y BZEHL QR y(y') = o+Tm(d) L) H ooyl (d(y) = 2,0,00(d, (1) = 2/

W2 by —y') € Im(dy, ), XRIETE o 15 d,1(a) = ¥uly — ') X Ynpr 2, M
MAFAE b T g (V1 (D) = ¥u(y — ¥)e T Ynldyi1(b) = dipy (Va1 (b)) = Yuly — '), XHE
y—y —d, 1 (0) € Ker(¢hn) = Im(p,). BIFFTE ¢ flifF y — ¢ — d),1(0) = @ulc)e W wn_1(dn(c)) =
&, (pn(0)) = dp(y—y —dpy () = d,(y—y') (HHR d,0d,, =0). FJ2 du(c) =, (d,(y—1)) =
z—2 €lm(d,), XFEWH z+1Im(d,) = 2’ +Im(d,).

(2) z =6,(x) € Ker(dp—1).

KRN on-2(dn-1(2)) = dyy_1(pn-1(2)) = d,_1(d},(y)) = 0.

(3) 0n RS

W« € Im(d) ), 7€ (1) PELIEHAE y — 0+ Im(d)), ), B4 2z =9, (d,(y) € Im(d,).
X 6, BTN EIC, 1T 0, BARFEARINER), M 0, JERERIZS

B2 T ORIGIE

Hy (‘P) Hy, (1/))

s Hy (C) 2 HL(C) H,(C) Ho(C") 22

HONIREE i
(4) Im(H,(¢)) C Ker(5,,)

AR ANaE S, ARPZE, W o+ Im(d),,) € Im(H,(v)), LA y € Ker(d,), Bl
y+1Im(dy, ) € Ho(C') , BEI} Hy(p)(y + Im(d;, ) = 2+ Im(dy ). FIER] 0 =d),(y) = pn-1(2),
MIAE z=0, B d,(x+Im(d,,,)) =0.

(5) Im(Hn () > Ker(,)
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W S, (x+Tm(d, ) =0, Bl 2 € Im(d,,), HBAFETE t fii15 2 = d.(t). /\}\ﬁ’ﬁ d\(y) = on_1(2) =
Pn-1(dn(t)) = dp(on(t))e I d(y — @nlt)) = 0. NIl y — pn(t) € Ker(dy,), XEM y — @,(t) +
Im(dy, 1) € Hn(C'), WAL n(y — @n(t) +1m(d;, 1)) € Im(H, (). M AR ¥n(y—on(t)) = =,
MM 2 + Im(dy ) € Im(H, ().

(6) Ker(Hpn-1()) D Im(é,)
/ElﬁﬁFE'TIEEﬁ Pn— 1(2 + Im( n)) ( )7 ﬁ%i%ﬂ/‘], j%’ @n—l(z) = d;(y) € Im(d,n)°
(7) Ker(H,1()) € Tm(s,)

W o1 (z+1Im(dy)) = Im(d,), BI @n_1(2) = di,(y)« i€ ¥u(y) = =, WH = € Ker(d))) , 2R
On BIHTER 0p () = 2. 1M = € Ker(dy) 2N d)(x) = d)(Vn(y)) = n-1(d),(y)) = Yn-1(pn-1(2)) =
0, O

3 3.22. Suppose 0 - A — A" — A” — 0 is exact, then for B € g M, there is a long exact sequence

-+ — Tor,1(A4", B) RIEZN Tor, (A, B) — Tor, (A", B) — Tor, (A", B) LA Torg(A”,B) = 0

BB X B B < Py di > 321, T P 28, Hi2.342 R, A
0—-A®P, v AP, - A"®@P, =0

RIEGTA. O

3 3.23. Suppose 0 — C — C' — C” — 0 is exact, then for B € p M, there is a long exact sequence

0 — Ext’(B,C) — Ext’(B, ") — Ext’(B,C") — Ext'(B,C) —

IER. X B S < Py,d; > WHI3.21, BT P 23, TRA
0 — Hom(P,,C) — Hom(P,,C") — Hom(P,,C") — 0
IEGF. O

i 3.24. If A’ is flat, then Tor,(A’, B) = 0,Yn > 1, then 0 — Tor, (A", B) — Tor,(A,B) = 0
is exact, i.e. Tor,,1(A”, B) = Tor,(A, B) Vn > 1.

#:i& 3.25. Similarly, if ¢’ is injective, then Ext"(B,C") = Ext"*(B, C) Vn > 1.

HE& 3.26. Suppose B € gk M, and suppose Tori(R/I, B) = 0 for evert finitely generated right ideal
I. Then B is flat.

. HRIEAY 0 > I - R — R/I — 0, W 0 = Tor,(R/I,B) — Torg(I,B) = [ ® B —
Torg(R,B) = R® B = B RIEAN. XKW I © B — 1B ¥4, 4EE 0 11, B &P
i O

e 3.27. Suppose B € rM, the following are equivalent:

e B is projective
o Forall C € gM and n > 1, Ext"(B,C) =

e Forall C € xM, Ext'(B,C) =
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JERA. 3I6E R T 1.=2., i 2.=3. 2 BIRM.

W 3. wior, 2L 0 — Hom(B, C) — Hom(B, C") — Hom(B,C") — Ext'(B,C) =0
IEf. XA B B T E o O

3.3 Flat Resolution and Injective Resolution
£ 3.28. A flat resolution < F;,d; > of A € Rk M is an exact sequence
o F, P, s Fy D A0

where each F), is flat. Every projective resolution is a flat resolution.

|3 3.29. Suppose Cjj,d;;,0;; form a commutative array in Ab (with rows and columns being

complexes)

Cs3 i Cs9 i Csq ds1 Csp I3, 0
055 03,2 05,1 03,0

L I L L S LU
0.3 022 02,1 D20

Cra di3 s di2 Cix dia Cro dio 0
01,3 01,2 01,1 01,0

Co,3 dos Co,2 e Con o Co,o o 0
Do,3 00,2 Do,1 9o.0

0 0 0 0

with all rows but the bottom exact, and all columns but the rightmost exact. Then the nth homology

of the bottom row is isomorphism to the nth homology of the rightmost column.

O Bk, X O Ciy MIEAIE, 0 Bl diy #ATDMERE C b %« € Oy, WX () =
9j(w), d(z) = dij(x).

/_\HEX Zn C @?:1 Ci,n7i+1a E— (3/1: e 7yn) C Zn — d(%) = 8(di+1)7 EI'J (yla e 7yn) ZEEI Cl,n
H Coy PEEE AL TTR A
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AMEHER, B0 > 20, R (Y1, yn) € Zn, A O1n(y1) € Ker(do)o

ﬁﬁﬁu% U Ker(do,n)a %B/L\ EH;‘F 6l,n %ﬁﬁrj—) Mﬁﬁ;{?/—({ Y1 1@?%: al,n<y1> = To & dl,n<y1> =z,
M4 0(z) = d(x) = 0. M 2 € Ker(O1,p—1) = Im(O2n—1), B Fya, O(y2) = d(yr), WIHAET, 155
—‘ZE. (yh e 7yn) S Zno
—FTH n B RIREER BT

f%ﬁ%ﬁgﬁ/l\ﬁE@*Zo ﬂn% f(yl) e 7yn) = 07 EI] al,n(yl) S Im(dOJH—l)v E]]/T?TZE a ﬁﬁ%‘ al,n(yl) ==
dO,n+1<a)7 HT 81,n+1 %{ﬁﬁt /‘Aﬁ'ﬁﬁﬁ ?Ji € Cl,nJrl @ifgf, a1,n+1(y'1) = Qo Jﬂﬁﬂﬂ' 31,n(d1,n+1(y/1)) =
do,n+1(a) = al,n(yl)a Ell Y1 — d1,n+1(yi) S Ker(al,n)o EE?%T%E*?Uﬁ[‘%K%EQﬂM& n>2, Eﬁ
Ker(d1,,) = Im(9(2,n)). HITFAE O2,n(y3) = y1 — dinr1(¥1)-

FENRFIHIHGNE:, R v = 0(s) +d(t), W24 I(yir1) = d(ys) = d(9(s) + d(t)) = d(d(s)) =
8(d(8)), 2, Yit1 — d(S) S Ker(8i+1,n+i—1)a [ﬁlfﬁﬂﬂﬂiﬁéﬂ, AT Yiv1 — d(S) = 8(t/), ﬁﬁéﬁﬁ*
B (Y- Yne) 15 () + 0(Wiy 1) = vie

Wﬁfiﬁﬂé; WARAFHE—7 (yimy;wﬂ) 75 d(y{) + 8(.%/41) =y, P4 d(yz) = d(a(yz/‘+1) =
Ad(Yi17)) = O(Wis1) s B (y1, -+ s yn) € Zyn, HILHS O(y1) = 0(d(y1)) = d(0(y1)), BI f(y1, -+ yn) = 0,

EFEFRATRE], f IS8 (y1, - Ynyy) WK . AT R TH—AT) n B [RAEE H, = Z,/B,,,

M S ok, SR i —s R EE H), = Z,,/B),, K Z), §i@ e Z, PRTR ST (Yn, - 01),
B, W7, X

H, = H:L(n >2)

M n=0,mn=1KERRFIRIE.

n=0H, Im(do1) = Im(d ) .15

n=1H, it Z1 ={y1 € Ci1: O10d1,1(y1) = 0}, [FHEBLESA v1 = d(z1) + O(22) g

i 3.30. X B BB P M A B F AR (KA A® B)
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d3 3 ds o ds ds o
P —BoP —FRhoPh—FReB——0
033 03,9 031 03,0
da3 da o da day
P — NP — QP —FR®B——0
Oa3 Oa,2 021 020
dis di2 di dio
'*>F0®P2*>F0®P1*>F0®P0*>FQ®B 0
O3 O1,2 O O 0
d d
0,3 0,2 0,1 0,0
o3 o2 o1 o0
0 0 0 0

M58, H Tor,(A,B) = H,(F, ® B,d;, @ ip).

X 3.31. Suppose C € g M, an injective resolution < Ej;,d; > of C is an exact sequence
05CSEy S B & E 5.
P 3.32. seeMFEMA Ext"(B,C) = H,(Hom(B, E,,),Hom(B, d,)).
il 7. We have Ext},(Q,Z) = R (as a group homomorphism), so Q is not projective.
1L 8. By using the injective resolution of Z
0-Z—-Q—-Q/Z—-0—---
we have

Ext}(Q,Z) = Hom(Q,Q/Z)/Im(f : Hom(Q, Q) — Hom(Q, Q/Z)) = Coker(f)

Hom(Q,Q/Z) is a vector space over Q, with the same dimension of R, a continuum. O

3.4 Consequences

firdi 3.33. Suppose 0 — B — B’ — B — 0 is a short exact sequence in g M, and suppose C € M.

Then there is a long exact sequence:

0 — Ext’(B",C) — Ext’(B',C) — Ext’(B,C) 2 Ext'(B”,C) — Ext'(B/,C) — - --
PER . FIRITAI S IE A S IR 2L, #2321,
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W C WM < Eid; >, ic 0 - Hom(B,E;) — Hom(B,E;) — --- 4 C, id 0 —
Hom(B', Ey) — Hom(B',E;) — --- K C’, i 0 — Hom(B",Ey) — Hom(B",E;) — --- N C",
A chain complexes 1 1F&%

0-C"=C"—-C—0

321 FH H,(C) = Ext™(B,C) J184rHg5it. O
#:i& 3.34. If B’ is projective, then Ext"(B,C) = Ext" ™' (B",C).

Hiie 3.35. Suppose C € M, the following are equivalent:

1. C is injective;
2. Ext"(B,C) =0 for all B € gM and n > 1,

3. Ext'(R/I,C) = 0 for all left ideals I

M. HFFIE 3. = 1.,
HT 0 R/I - R—1—02EAFY, M
0 — Hom(R/I,C) — Hom(R,C) — Hom(I,C) — Ext'(R/I,C) =0

IEA. XFEW Hom(R,C) — Hom(I,0) 2. MIIXER f € Hom(I,C), #HATLAFETE] g €
Hom(R,C), g & f W5 . XFEH Bare’s theorem R[5 C' 2 PR, 0

E X 3.36. R°P is the opposite to the ring R, with the same addictive operation, but the multiplication

is reversed: a - b = ba.

firid 3.37. Tor(A, B) = Tor®" (B, A)

JEBR. UFAIE G TorY " (B, A) i, % A BEFHEME < B, >, TR R, AT
XA FHH i ﬁﬁ&ﬂ]ﬁ Tor’ (A B) Hn(En ®r B,d, ®r ZB) = Hn<B Qpor Ey,ip Q@por dn) =
Tor!" (B, A). O

€3 3.38. If 0 — B — B’ — B"” — 0 is short exact, then there is a long exact sequence
-2 TorB (A, B) — Tor®(A, B') — - — Torf (A, B') — Torf(A, B") — 0

#Hiie 3.39. Suppose A € g M, the following are equivalent:

1. A is flat;
2. Tor(A, B) = 0 for all B € Mg;
3. Torf(A, R/I) = 0 for every finitely generated left ideal I;

HEi 3.40. Suppose B € M, the following are equivalent:

1. B is flat;
2. Torf(A,B) = 0 for all A € Mg;

3. Torf(R/J, B) = 0 for every finitely generated right ideal J;
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3.5 Exercises
1. Compute Tor’*(Zy, Z,).

f&. Considering the projective resolution of Z4:
x4 X2 x4 X2
oo > Ly —> Ly —> Ly — Lg —> Ly — 0
we tensor it with Z, and delete the part that should be deleted, then we have:
X2 x4
—>Z4®Z8 —>Z4®Zg—>Z4®Zg—>O

it’s equivalent to

"'—>Z4—>Z4—>Z4—>O

Then TOI‘O = Z4 & Z4 = Z4, and TOI‘Qn = ZQ, TOI‘anl = ZQ,TL Z 1. O

3. Suppose < F,,,d, > is a flat resolution of A. Show that the nth homology
> F®B—-FN®B—>F,B—0

is isomorphic to Tor,, (A, B) by the following steps:

1. Verify the case n = 0.

2. Verify the case n = 1 by the following device: Set K = Im(d;) C Fy. One has a short exact
sequence 0 — K — Fy — A — 0, to which 3.22 applies. One also has Fy, — F; — K — 0 exact,
and ®B is right exact. Play these off against each other.

3. Verify the induction step n — n+ 1, using 3.22 again, along with the fact that --- — Fy — F; —
K — 0 is a flat resolution of K.

1EBf. 1. This is the case n = 1 in 3.29.

2. b B—F,®B — K®B — 0is exact. Then H; = Ker(F; ® B — Fy ® B)/Im(F, @ B —
F1®B) :Ker(F1®B—>F0®B)/Ker(F1®B—>K®B)

Since 0 - K — Fy - A — 0 is exact, from 3.22 we have Tory(Fy, B) — Tor;(A, B)
Toryg(K, B) — Torg(Fy, B) is exact. Fy is flat deduces that Tor;(Fy, B) = 0, hence Tor;(A, B)
Ker(K ® B — Fy® B) = Ker(Fy ® B — Fy ® B)/Ker(F, ® B — K ® B) = H,.

R 4

F1®B4>F0®B

NS

K®B

3. For the induction step n — n+1, n > 1, similarly we have Tor,, 1 (Fy, B) = 0 — Tor,1(A, B) —
Tor, (K, B) — 0 is exact. Then Tor,1(4, B) = Tor, (K, B).

Considering that --- — F» — F; — K — 0 is a flat resolution of K (note that there’s no Fy
here), hence we obtain Tor,, (K, B) = H,,+1(=Im(F,,12o ® B — F,11 ® B)/Ker(F,,+1 ® B — F, ® B))
by the induction hypothesis. Then H,, 1 = Tor,1(A4, B). O
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7. Suppose < E;,d; > is an injective resolution of C' € g M, < E!,d; > is an injective resolution of
C’, and ¢ € Hom(C, C"). Show that fillers ¢, exist for

d d,, dn
0 C : Ey - Ey T E, ! B
@ %0 1 ' Pn | Pnt1
L/ * dll v d;z M d;l+1 h
0 C, E(I) Ei E;I E;H-l

and that any two fillers are homotopic.

1EBf. Since E’ is injective, then (¢ is a filler for

If vo - - - ¢, has been defined, there exists a filler ¢, for

0— Im(dn+1) = En/Ker(d,H_l) — En+1

-

-
-

d o -
1°¥n -
nt - - ¢n+ 1

k

!
En+1

For any two fillers {¢, } and {¢,}, since ggot =t o = ¢} o, we have Ker(d;) = Im(t) C
Ker(py — ¢o). Let Ag denotes one of the fillers for

0—— Im(d1> = EO/Ker(dl) (—; E1

/ -
Yo — ¥o <

Then A od; = ¢ — ¢o.

If Ap,---,A, has been defined, and ¢!, — ¢, = d/, o D,_1 + D,, o d,,11, then ((p’n+1 — Pptl —
dy10Dp)odpyy =dp 0@ —¢—Dyodyyr) =d, 0(d, 0oD,_q) =0. We obtain Ker(d,42) =
Im(d,+1) C Ker(¢) 1 — @ni1 — d, oy 0 Dy), let A,y be a filler for

0— Im(dn+2) = En+1/Ker(dn+2) — En+2

/
‘Pn+1 — Pnt1 -

;<7
EO
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Then ¢,, and ¢!, are homotopic. O
8. Show that if Ext(B,C) = 0, then any short exact sequence 0 — C' — X — B — 0 is split.

i£8f. Denote that 0 — C 2 X i> B — 0.

Using 3.23 we can obtain 0 — Ext’(B,C) — Ext’(B,X) — Ext’(B,B) — Ext'(B,C) = 0
is exact. It’s equivalent to 0 — Hom(B,C) — Hom(B,X) — Hom(B,B) — 0 is exact. Since
Hom(B, X) — Hom(B, B) is onto, there exists f € Hom(B, X) such that f — ip, that means,

w o f == iB'

Similarly using 3.33 we have exact sequence 0 — Hom(B, C') — Hom(X,C) — Hom(C,C) — 0,
and Hom(X,C) — Hom(C,C) deduces that g o ¢ = ic for some g € Hom(X,C). Let ¢'(z) =
9(x) = g(f(¥(x))), then ¢'(p(x)) = g(¢(z)) = ic and ¢'(f(x)) = g(f(z)) — g(f(¥(f(x)))) = 0.

The last step is to prove p o ¢’ + f o1 = ix. This is deduced easily by the exactness. Let T
denote p o ¢’ + f o1, then z — T'(x) € Ker(¢)) = Im(yp), that is, z — T'(z) = ¢(y) for some y € C.
Hence ¢'(z — T'(x)) =y, i.e. y = ¢ (f(¥(x))) =0. Sox =T(x), T =ix. O

9. Suppose [ is a left ideal and J is a right ideal. Show that

1. Tor,(R/J,R/I) = Tor,_o(J,I) for n > 2;
2. Tors(R/J,R/I) = Ker(J @ I — JI);

3. Tory(R/J,R/I) = (JNOI)/(JI)

1E7]. From exact sequence 0 — I — R — R/I — 0 and 3.38 we have 0 = Tor,(R/J,R) —
Tor, (R/J,R/I) — Tor,,_1(R/J,I) — Tor,_1(R/J, R) is exact.

If n > 2, we have Tor,(R/J,R/I) = Tor,,_1(R/J,I). By using 3.22 and the similar process, we
can obtain Tor,_1(R/J,I) = Tor,_o(J,I).

If n =2, 0 — Tory(R/J,I) — Torg(J,I) — Torg(R,J) is exact. Then Tori(R/J,I) =
Im(Tory(R/J,I) — Torg(J,I)) = Ker(Torg(J,I) — Torg(R,J)) = Ker(J ® I — J). We have
Ker(J@I — J)=Ker(J®I — JI).

If n =1, Tory(R/J,R/I) = Im(Tor1(R/J,R/I) — (R/J)®I) = Ker(R/J ® I - R/J ® R) =
(I/IJ—=R/J)=(JNI)/JI.

O

10. Suppose B is an Abelian group. The torsion subgroup, T'(B), is the subgroup of B consisting of
elements of finite order. Show that T(B) = Tor?(Q/Z, B).

1. We have B/T(B) is torsion free, then it’s flat. Considering the exact sequence 0 — T'(B) —
B — B/T(B) — 0 and using 3.38 we can obtain Tory(Q/Z, B/T(B)) = 0 — Tor’(Q/Z,T(B)) —
Tor?(Q/Z, B) — Tor”(Q/Z, B/(T(B)) = 0 is exact. Hence Tor?(Q/Z, T(B)) = Tor*(Q/Z, B)

From chapter 2, exercise 12 we can obtain Q is flat, then 0 + Q/Z + Q «+ Z + 0+ --- is a
flat resolution. By 3.30 we have Tor}(Q/Z,T(B)) = Ker(Z ® T(B) — Q ® T(B)) = Ker(T(B) —
Q& T(B)).
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Q®T(B) is generated by ¢q®t, ¢ € Q, t € T(B), and there exists n € Z such that nt = 0. This
deduces @t =¢q/n®@nt =0, ie. Q®T(B) =0. Then Ker(T(B) - Q® T(B)) =T(B) O

11. Show that
1. Ext"(®B;, C) =2 TExt"(B;,C)
2. Ext™(B,11C;) = [IExt™(B, C;)
3. Tor,(A,®B;) &2 @Tor,(A, B;)
i£f]. 1. Apply Hom(®B;,+) = IIHom(B;, ) to an injective resolution of C'.

2. Apply Hom(+, IIC;) = IIHom(+, C;) to a projective resolution of B.

3. Apply - ® (&B;) & &(-® B;) to a flat resolution of A. O

12. Suppose B; and By are submodules of B € rM. Show that VC' € g M there is a long exact

sequence

0 — Hom(B; + Bs, C) — Hom(By, C') ® Hom(B,, C') — Hom(By N By, C) — Ext' (B, + B,,C) — - -

1E8]. This is the corollary of last exercise (since 0 — ByNBy — B; ® By — By + By — 0 is exact). O

4 Dimension Theory

4.1 Dimension Shifting

8 4.1. If B € gM, n > 1, and Ext"(B,+) = 0, then Ext*(B,+) = 0 for all k > n.
jE8]. For any C' € Rk M, imbedding C in an injective E yields Ext"**(B,C) = Ext"(B, E/C) =0. O
X 4.2. We now define projective dimension, abbreviated P — dim :

P — dim B = inf{n > 0 : Ext""!(B,) = 0}
#eig 4.3. If P — dim B = 0, then B is projective.
EBf. Use 3.27. O
M8 4.4. If C € kM, n > 1, and Ext"(-,C) = 0, then Ext*(-,C) = 0 for all k > n.
£ 4.5. We now define injective dimension, abbreviate I — dim :

I —dim C = inf{n > 0: Ext""!(-,C) = 0}
il 4.6. If B€ kM, n > 1, and Tor,(+, B) =0, then Tor(+, B) =0 for all &k > n.
£ 4.7. We define flat dimension, abbreviated F — dim :

F —dim B =inf{n > 0: Tor,,1(+, B) = 0}
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i 4.8. For A € Mg, we can define three dimensions similarly.

X 4.9. We now define the right global dimension of R itself, abbreviated LG — dim :

LG —dim R =sup{P —dim B: B € gM}

Similarly, the right global dimension is defined:

RG — dim R = sup{P —dim A: A € Mz}

The weak dimension, is defined:
W —dim R = sup{F —dim B: B € gM}
i 4.10.

1. LG —dim R = inf{n > 0: Ext""'(-,+) = 0} = sup{I — dim C : C € xkM}
2. W—dim R =inf{n > 0: Tor,1(+,+) =0} = sup{F —dim A: A € Mg}

i 4.11. Suppose 0 D — Ly — Ly — -+ — L, — D' — 0 is exact in gM, and d > O:

1. If P — dim L; < d for all j, then Ext"(D,C) = Ext"™(D’,C) for all C € gM and k > d.
2. If T —dim L; < d for all j, then Ext*(B, D') = Ext"™"(B, D) for all B € xkM and k > d.
3. If F —dim L; < d for all j, then Tor*(A, D) = Tor*™"(A, D') for all A € Mg and k > d.
1B =AM IE 2 2R R, X n 344
n=1H,0— Ext’(D,C) — Ext*™(D',C) = 0 BIEGIFH, I\ Ext®(D, C) = Ext* (D', C).

n—-1—-n it Q2 L, —-D W, Fa0—-D—-L— - —=L,1 —-Q—0M0—>Q—
L, — D — 0 #2EAN. RPN Ext®(D,C) = Ext" ™ 1(Q,C) = Ext*™(D’,C). O

X 4.12. For any projective (or flat) resolution < P, > of B, set Ky = B, K; = Ker(n), K, =
Ker(d,_1), then -+ —-0— K, - P, 1 — -+ — Py — B — 0 is exact. K, is called the nth kernel of

the projective resolution.

findl 4.13 (Projective Dimension Theorem). Suppose B € gk M. The following are equivalent:

1. P—dim B<n
2. The nth kernel of any projective resolution of B is projective
3. There exists a projective resolution of B whose nth kernel is projective.

4. There exists a projective resolution < Py, d; > of B for which P, =0 when k > n

JE. 1.=2: 0> K, = P,y — ---— Py — B = 0 IE& &4.1145 1 Ext' (K, C) = Ext"* (B, C),
BT P—dim B <n, 4 Ext'(K,,C) = Ext""(B,C) =0, X%4H P—dim K, =0, B K, 2
SRR

2. = 3.0 ENLEFEILR.
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3.= 4 WX K, BN, WA - 20— Ky = Py = = Py = B — 0 HARE D
. FLVE AL
4. = 1. WA Hom(P,,C) =0, k > n, H Ext®(B,0) & X[ bAEE) Ext*(B,C) =0, k > n,
Bcbe P dim B <, -
K,
fnd 4.14 (Flat Dimension Theorem). Suppose B € kM. The following are equivalent:
1. F—dim B<n
2. Tor,1(R/I, B) =0 for all finitely generated right ideal T
3. The nth kernel of any flat resolution of B is flat
4. There exists a flat resolution of B whose nth kernel is flat
5. There exists a flat resolution < Fj, dy > of B for which Fj, =0 when k > n

#Eig 4.15. For all B€ xM, F —dim B <P —dim B

1EBf. If P — dim B = oo, it’s trivial. If P — dim B = n, then the nth kernel of a projective resolution
of B is projective, hence flat. Thus, F — dim B < n. O

HEig 4.16. LG —dim R > W —dim R, RG —dim R > W —dim R
X 4.17. Similarly for injectives, suppose we are given an injective resolution of C' € pM:
05CHE S E 2B ..

Set D,, = Im(d,) = E,_1/Ker(d,) = E,,_1/Im(d,,_1), n > 1, Dy =Im(:) 2 C, then 0 — C — Ey —
o= FEy 1 —> D, —0— .- isexact. D, is called the nth cokernel of the injective resolution.

i 4.18 (Injective Dimension Theorem). Suppose C' € Rk M. The following are equivalent:

1.I-dim C <n

2. Ext"*(R/I,C) = 0 for all left ideals I

3. The nth cokernel of any injective resolution of C' is injective

4. There exists an injective resolution of C' whose nth cokernel is injective.

5. There exists an injective resolution < Ey, dy > of C for which E;, =0 when k > n
i 4.19 (Global dimension Theorem). LG — dim R = sup{P — dim R/I : I a left ideal}

HEig 4.20. If LG — dim R > 0, then LG — dim R =1+ sup{P —dim I : I a left ideal}.

iE8. We have Ext™(I,C) = Ext"™ (R/I,C), n > 1. O
HEB 4.21. LG — dim R <1 <= every left ideal is projective.

g 4.22. If R is PID, then LG — dim R < 1.
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¥ 4.23. The ring Z4 is a principal ideal ring but not a domain, and W —dim R = oo since
TOI‘n(ZQ,Zg) # 0.

findl 4.24 (Weak dimension Theorem).
W —dim R = sup{F —dim R/I : I a finitely generated right ideal}
W —dim R = sup{F —dim R/I : I a finitely generated left ideal}
#iig 4.25. If W — dim R > 0, then
W —dim R=1+sup{F —dim I : I a finitely generated right ideal}
W —dim R=1+4sup{F —dim I : I a finitely generated left ideal}

HEIE 4.26. W —dim R <1 <= every finitely generated left ideal is flat.

4.2 When Flats are Projective

e 4.27 (Projective Basis Theorem). Suppose P € p M. The following are equivalent:

1. P is projective

2. If P is generated by {s; : i € I}, then there exists ¢; € P* = Hom(P, R),i € I such that for all
x € P, {iel:p(x)#0}is finite, and x = > p;(x)s;.

3. There exists a generating set {s; : i € I'} of P for which there exist ¢; € P*,7 € I such that for
all x € P, {i € I : p;(x) # 0} is finite, and z = >_ p;(x)s;.

iER. 1. = 2.: Suppose P is generated by {s; : i € I}, let F = ®;c;R be the free module on I,
7w : F — P defined via i — s;. Then F — P — 0 is exact, hence 0 — ker(r) — F — P — 0 splits
since P is projective (idp could extend to n : P — F'). Suppose the ith coordinate of n(x) is ¢;. Then
x =Y pi(x)s; and {i € I : ¢;(x) # 0} is finite.

2. = 3.: It is trivial.

3. = 1.: Let F is the free module on I, and 7 : i — s;. define n(x) = >_ @;s;, then ip = 7, then
F — P — 0 is splits. Thus, P is a direct summand of F, hence projective. O

i 4.28. Suppose P is finitely generated. Then P is projective if and only if the image of the
natural map P* ® P — Hom(P, P) contains ip.

. Y ;R8s ip <= =) pi(r)s;. O

EX 4.29. Suppose B € g M is finitely generated. B is called finitely presented provided there exists
a finitely generated free module F, and a map « from F onto B, such that Ker(n) is also finitely

generated.

Hiie 4.30. All finitely generated projective modules are finitely presented.

1E8]. Projective module B € pM gives the sequence 0 — Ker(w) — F — B — 0 splits, then Ker()

is a direct summand, hence a image. Therefore Ker(r) is finitely generated. O
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firidl 4.31. Suppose B € rM is flat, and suppose C € grM is finitely presented. Then C* ® B —

Hom(C, B) is an isomorphism.

1ER]. We may suppose that we have finitely generated free modules Fy and F}, and an exact sequence
Fy, — Fy — C — 0 (Ker(Fy — C) is the image of F}). Since Hom(+, R) is left exact, then 0 — C* —
Fy — FY is exact. Then 0 = C* ® B — Fj ® B — F} ® B is exact since B is flat.

If F is finitely generated free module, i.e. F' = &R, then F* ® B = §(R® B) = B =
®Hom(R, B) = Hom(F, B). This lemma gives F}" ® B = Hom(F}, B), Ff @ B = Hom(F,, B). Then

there exists commutative diagram

0 0 C*®B Fy®B Fr®B
0 0 Hom(C, B) —— Hom(Fy, B) —— Hom(F}, B)
We can obtain the conclusion by 5-lemma. O

EH 4.32. Suppose P € gM is finitely generated. The following are equivalent:

1. P is projective
2. P is flat and finitely presented
3. The natural map from P* ® P to Hom(P, P) is an isomorphism

4. The image of the natural map from P* ® P to Hom(P, P) contains ip

1ERA. 4.30 gives 1. = 2., 4.31 gives 2. = 3., 3. = 4. is trivial, 4.28 gives 4. = 1.. O

HEIE 4.33. Suppose R is left Noetherian, and suppose B is a finitely generated left R-module. Then
P —dim B =F —dim B.

1E8. Choose Fj a finitely generated free module and « : Fy — B is onto. Since R is left Noetherian,
hence Ker(7) is also finitely generated. Then choose F} a finitely generated free module like previous,

etc.

We get a series of finitely generated free modules {F,, } such that --- — F,, - F, 1 — -+ — F| —
Fy — B — 0 is a flat resolution of B. Then the nth kernel of this resolution is finitely generated, hence
obviously finitely presented, hence flat if and only if projective. Then P —dim B=F —dim B. [

HEiB 4.34. Suppose R is left Noetherian. Then LG — dim R = W — dim R.

1E7]. The two dimensions only rely on the quotients R/I, which are finitely generated modules. [

i1 4.35 (Auslander). Suppose R is both right and left Noetherian. Then LG — dim R = RG — dim R.
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4.3 Dimension Zero

EX 4.36. A Dedekind domain is an integral domain with global dimension less than or equal to one.

e 4.37. Every ideal of Dedekind domain is projective.

iERA. 4.21. O
firii 4.38. Suppose R is commutative, and I is a projective ideal containing a nonzero divisor b.
Then I is finitely generated, say by s1,--- ,s,. Further, there exists by,---, b, in R such that, for all
J, b divides zb; for all z € I, and = = ) (zb;/b)s;. In particular, if R is an integral domain, then any

projective ideal is finitely generated; hence, any Dedekind domain is Noetherian.

1ER]. Since [ is projective, suppose [ is generated by s;, then there exists ¢; : I — R such that
x =Y @i(x)s; for all x € I. If ;(b) = 0, then xp;(b) = by;(x) = 0. Since b is nonzero divisor, then
wi(z) = 0, that is, there exists finite @; # 0, i.e. I is finitely generated.

Let ¢;(b) = b; # 0, then b divides zb;, and @;(x) = xb;/b (the quotient is well-defined if b is the

denominator). ]

X 4.39. If Risaring, and B is an R-module (left or right), then B is semisimple if every submodule

of B is a direct summand of B.

i 4.40. Since 4.10, if LG — dim R = 0, then every left R-module is injective. Then if B is a

submodule of C', we have B is a direct summand of C' (2.43). Then every left R-module is semisimple.

X 4.41. If R is ring, and B is an R-module, then B is simple if B # 0, and the only submodules
of B are 0 and B.

B is simple if and only if B # 0 and Rz = B for all z € B.

X 4.42. If R is a ring, and B is an R-module, B’ is a submodule. Then B’ is maximal if B/B’ is

simple.

il 4.43. Since Rz = R/Ann(z), then B is simple if and only if B is isomorphism to a quotient

R/I, where [ is a maximal left ideal.

5|8 4.44. Every submodule of a semisimple module is semisimple.

el & D kR, H C 2 D BT X C WEE T B, 71 A (i Ae B = D. XH
AnNB=w@g, HA+(BNC)=C., T2 C=Ad(BnC), O

firii 4.45. Suppose R is a ring, and B € kM. Suppose B is generated by a set S together with an
element x, but is not generated by S alone. Then any submodule of B that contains S, and is maximal

with respect of the property of not containing x, is maximal as a submodule. Such submodules exist.

1EBf. Use Zorn’s lamma. O

#ii8 4.46. Every nonzero semisimple module contains a simple submodule.
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1E8f. For x # 0, let B’ be the submodule generated by z, and let S = @&. Then there exists B”
is a maximal submodule of B’. Since B’ is semisimple, then B’ = B” @ B"”, i.e. B” = B'/B" is

simple. O

firi 4.47. Every semisimple module is the sum of its simple submodule.

1EBf. If B is semisimple, let B’ denote the sum of all the simple submodules of B. If B # B’,
then B = B’ & B”, then B” is semisimple, which contains a simple submodule. Then B” N B’ # 0,
contradiction. We obtain B’ = B. O

5|8 4.48. Suppose B is an R-module, I is an index set, and B; is a simple submodule of B for each
i € I. Also suppose B =Y, B;, that is, B is the sum of the B; (probably not direct) of the B;. Then
for any submodules of B there exists a subset J of I such that B = B’ @ (®;cH;).

iEP. Consider the set X consists of all the subsets J of I such that B’ + (3 _,.; Bi) = B’ ® (®ics Bi),

Y # & since @ € ¥. Use Zorn’s lemma, there exists a maximal element (also said J) in X.

Suppose t € I — J, then B @ (DejuyBi) # B’ + (ZieJu{t} B;)) = B' & (®;eyB;) + By, that
is, BN (B’ @ (®icsB;)) # 0. As a nonempty submodule of simple module B;, we have B, N (B’ @®
(®icsBi)) = B;. Then for all By, B, € B’ @ (®;eyB;), hence B = > B, C B’ ® (®iesB), ie.
B =B'® (®icsBi). O

EH 4.49. Suppose B is an R-module. The following are equivalent:

1. B is semisimple
2. B is a sum of simple submodules

3. B is a direct sum of simple submodules

1E8A. This theorem follows from 4.47 and 4.48. O

E X 4.50. For all R-module B, Hom(B, B) is a ring, called the endomorphism ring of B, and is
denoted End(B).

e 4.51. If B and B’ are simple R-modules, then every nonzero element of Hom(B, B’) is an

isomorphism.

1iE8]. For every 0 # ¢ € Hom(B, B’), B and B’ are simple gives that Ker(¢) = 0 and Im(¢) = B’. O
i 4.52 (Schur’s Lemma). If B is a simple R-module, then End(B) is a division ring,.
1 4.53. RITRAGAA I TAART LI, HRIRIRIF A3k

ind 4.54. 298 Hom(B", B") IR 1] AR Hom(B, B) HRYICEM I nxn (RIFE M, (End(B)),
HAMIZE S S B R —8. &6, #A14 End(B") = M, (End(B))

HE® 4.55. Suppose By, -+, By are pairwise nonisomorphism simple R-modules. Then

End(B{" & --- BY¥) = M, (End(B,)) @ --- My (End(By))

© F.P. (1800010614@pku.edu. cn) 39 2022 &



S —
AL KR BCE R R
School of Mathematical Sciences,Peking University

4 DIMENSION THEORY

g|H 4.56. Suppose B is a finitely generated semisimple R-module. Then B is a finite direct sum of

simple modules.

1iEBf. B is a direct sum of simple submodules B = &;<;B;

If B is generated by z1,--- ,x,, then for every 1 < j < n, the number of 7 satisfied z; € B, is
finite. Then there exists a finite subset J C I such that B = &;¢;B;. ]

5|l 4.57. If R is a ring, then the opposite ring to M, (R) is isomorphic to M, (R°P), via A — AT.
5|3 4.58. Hompg(R, R) = R°P (as a ring isomorphism)

L 4.59 (Artin-Wedderburn Structure Theorem). Suppose R is a ring. The following are equivalent:

1. LG—dim R=0
2. Every left R-module is projectrive.
3. Every left R-module is injective.
4. Every left R-module is semisimple.
5. Every short exact sequence of left R-modules splits.
6. Every left ideal is injective.
7. Every maximal left ideal is injective.
8. Every maximal left ideal is a direct summand of R.
9. For every left ideal I, R/I is projective.
10. Every simple left R-module is projective.
11. R is semisimple as a left R-module.

12. R is finite direct sum of matrix rings over division rings.

IER]. AES AT :
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MR — S — Uil

1. = 2. 2FH LG —dim R #5E X.

1.= 3. i LG — dim R fy#—25 4. 1045 H .
2. = 9. 4194 H.

3.= 5. H12.43%4H.

3. = 6.: ZHAHENSARL, M2 AL

4. = 11.: R HAR AL R-BL, M.

5.=4.: ¥ B Rk REH AR BWTHE, ZEIESH0—-A— B— B/A— 0, FHHNX
TS, M B=A® B/A, Xt B 2.

6. = 7.0 KR T LY.
7.= 8. H2.43%45 1

8. = 11 % J ZFA R QETERA, WR J £ R, TALFE RO [ oo J, (1R
R/TRHH, H R/INT =2, FF. Nl J =R, 149, R b,

9. = 1. f14.1945 .

9. = 10. f4.43%5 .

10. = 8.0 XK AHM I, R/T AR, BB, h2.3145H.
11.=9.: R=R/I®I, Xkt R/I 2 H MR EMIT, TIRZHFHY.

11 = 12.: R RAGRA IR R, XA H4.56 R 2B TRIKA IREA, XA R = Hompg(R, R)
e PR AT R ELRT . P IR IR op BTG

12. = 11.: % R = M, (R) ® - & M, (R,). W& M.(R), it Li NETH k 51495 0
PR B PEAR , XA Ly BEAMAZ B HEFN M (R), XFE M. (R) @FHH, XM R ZFH
1 O

HEB 4.60. AIPAEH, 12. AIARAR X, Wi LG —dim R =0 <= RG —dim R =0.

X 4.61. If R is a ring, then R is regular if, for all a € R, there exists r € R for which a = ara (r

depends on a).

58 4.62. 2% Rra C Ra, 1fij Ra = Rara C Rra, %#f Ra = Rra. 1fi ra = (ra)?, XFAEASFH
TEHR 2 7 5 AR U
5|B 4.63. Suppose R is a ring, and I is a left ideal. Then I is a direct summand of R if and only if

1 is principal and generated by an idempotent.

JEBA. If I = Re with e = €2, let f = 1 — e, then Re + Rf = R. And we have Re N Rf = 0 since
rie=ry(l—e€) = (ri+r)e=ry= (r1+r2)e = (r1 +re)e? = e = rie = 0. Then R = (Re) & (Rf).

IfR=1I®J,thenl =e+ fforsomee €I, f e J, andef € INJ = ef = 0. Therefore
e+ fP=e+f, hencee—e?=f2—fciInJ,ie.e=¢e* f=f2 Recl, Rf CJ,and Re+Rf =R
deduces that Re =1, Rf = J. O
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5B 4.64. Suppose R is a ring, and suppose e and f are idempotents in R such that ef = 0 = fe.
Then e + f is idempotent and Re + Rf = R(e + f).

5|8 4.65. Ra+ Rb = Ra+ Rb(1 —a)

S|P 4.66. Suppose R is regular. Then every finitely generated left ideal is principal (and generated
by an idempotent).

TEAA. 5L B4.64RI4.6545 1 IS ERRAR Y AL 2 3 AT

XN Ra+ Rb = Ra+ Rb(1—a), it b =rb(1—a), H r 215 b(1—a)rb(l—a) = b(1—a)
ST o IXFE RY = Rb(1—a). H V'a=0, b?> =rb(1—a)-rb(1—a) =rb(l—a) =b. &K a’ = a(1-V),
N a? =a(l —V)a(l—-V) =ala—ba)(l-b)=a*(1-V)=a(l-V), H bad =0,a't/ =0, Mifi
Ra+ Rb= Ra+ RV = Ra’+ RV = R(a' + V). O

P 4.67 (Weak Dimension Zero Characterization). Suppose R is a ring. The following conditions

are equivalent:

—

. W—dim R=0
2. Every left R-module is flat
3. For every finitely generated left ideal I, R/I is projective

4. Tory(R/J,R/I) = 0 for every finitely generated right ideal J and every finitely generated left
ideal I

5. Tor;(R/aR, R/Ra) = 0 for every a € R

6. R is regular

JER. 1. = 2. W — dim R {5 X4 H .
2. = 4. XL
4. = 5. XM

5. = 6. IRIEHE==WE 9, 0 = Tory(R/J,R/I) = (JNI)/(JI), Xkt JNT = JI. MIifi
a € aRNRa =aRRa = aRa, BIELE r 15 ara = a.

6. = 3.: R J& regular 43 R AYFTAA FRAMPATASE FRAE, Hiw ol XR4.6345
I} REMT, R=I1®R/I, B R/I 2K,

3.= Lo 339RINLEA L R-AEEHY, X W —dim R=0. [

{1t 4.68. Since R/I is finitely presented (I is finitely generated), then R/I is projective if and only if
it’s flat.
4.4 An Example

E X 4.69. A Bézout domain is an integral domain in which every finitely generated ideal is principal.

i@ 4.70. Since R — Ra is a module isomorphism, then every principal ideal in integral domain is

projective, hence flat.
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HE® 4.71. Any finitely generated ideal of a Bézout domain is projective, hence flat.
iR 4.72. 4.2645H W —dim R < 1,

i 4.73. If a Bézout domain is not a PID, then there exists an ideal I which is not finitely generated.
By 4.38 we have I is not projective. Then 4.21 deduces LG — dim R > 2. Then Bézout domain is an
example satisfied W — dim # LG — dim .

findl 4.74. If T is a nonprincipal ideal of a Bézout domain, and I is generated by a countable set {r;},
then P —dim I = 1.

iEfA. Let I, = (rq,--- ,70) 2 Ra,, I,+1 D I, deduces that a,1|a,. We have I = |JI,. Suppose

Op = dpQpy1-
Denote F' = &2, R, and send (21, ,Zy, -+ ) to > x;a;. The map is onto.
Set v; = (1,—d,,0,---),va = (0,1,—d5,0,---),---, we have v, — 0, so v,, € Ker(F — I) K.

Suppose (z1,-+- ,2n,0,--+) 0, then Zf\il x;a; = 0. Since it’s a finite sum, by induction on N,

we have K is generated by v,.

And if sz\; v;8; = 0, then by induction on M, we have s; = 0, then K is free. Then --- — 0 —
K — F — I — 0 is a projective resolution of K, hence P —dim I < 1.

But I is not projective, hence P — dim I = 1. O

4.5 Exercises

2. Suppose 0 -+ B —+ B’ — B” — 0 is short exact in gpM, and suppose P —dim B > P — dim B’ or
P —-dim B” >1+ P —dim B’. Show that P —dim B” =1+ P — dim B.

iER]. When P — dim B’ = oo, the conclusion is trivial.
Let P —dim B’ =1t < .

For every C €g M, --- — Ext"(B",C) — Ext"(B',C) — Ext"(B,C) — Ext"*"(B",C) — -
is exact. Then whenever P —dim B > P —dim B’ or P —dim B” > P —dim B’ + 1, we have 0 —
Ext'(B,C) = Ext'™(B", 0). O

4. Prove Schanuel’s lemma: If 0 — K; — P; — B — 0 are short exact for i = 1,2, with P; and P,
projective, then Kl D P2 = KQ & Pl.

1EBf. Since P; and P, are projective, there exists f and g such that
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We have K; = Ker(y¢1), Ky = Ker(ps), and = € Ker(¢1) = € Ker(ps o f) = f(x) € Ker(ps),
similarly g(Ker(p2)) € Ker(¢1). Then we can build a homomorphism

QZJZKGF((pl)EBPQ — P
(ki pi) = ki — g(p;)

If k; — g(p;) = 0, then k; = g(p}), then p2(p;) = 0, so we have Ker(¢)) = K,. Furthermore, for
all p; € Py, k; 2 pi — g(f(p:)) € Ker(y1), this deduces v is onto. Since P is projective, then P; is a
summand of Ker(gpl)@Pg, i,e. Pl@KggKl@PQ. ]

5. Suppose B is finitely presented, and suppose P is projective and finitely generated, with 0 — K —
P — B — 0 short exact. Show that K is finitely generated.

1B, There are two short exact sequences 0 - K — P — B — 0 and 0 — Ker(®R — B) — ®R —
B — 0. By the last exercise, we have K & (®R) = Ker(®R — B) @ P. Hence K = (P @ Ker(®R —
B))/(®R) is finitely generated. O

6. A ring R is called a Boolean ring if x = 22 for all z € R.

1. Show that any Boolean ring R is commutative, with x = —z for all z € R
2. Show that any Boolean ring is regular
3. Show that any finite Boolean ring is isomorphic to a finite direct sum of copies of Z,
i, 1. Sincex+z = (x+z)? =2 +2°+2° +2’=z+rx+z+x=2+2=0= = —x, we have
r+y=(+y)let+y) =x+y+ary+yr=ay+yr=0=xy=yx foral z,y € R.
2. Let r =1, we have a = ara.

3. Forz € R,let y=1—2. Then Ax + Ay = A, and Az N Ay = 0. Then Ax ® Ay = A. By

induction we can get the conclusion. O

7. Let R = [[,2, Z>, the product of infinitely many copies of Z,. Note that R is a Boolean ring,
hence is regular by exercise 6. Let I = ;| Zo.
1. Show that [ is projective but not finitely generated.

2. Show that R/I is flat and finitely generated, but neither finitely presented nor projective. Show
that as explicitly as possible where 4.32 break down.

3. Show that LG — dim R > W — dim R.

1E8]. 1. This is equivalent to Z, is projective. But R = Zy @ ([[ Z2) is project, then Z, is projective.

2. 4.67 deduces R/I is flat. R is finitely generated as a R-module, then R/I is finitely generated.
Since I is not finitely generated, R/I is not finitely oresented.

3. W—dim R =0. Since R/I is not projective, this deduces LG — dim R > 0. O
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8. Suppose [ is a projective ideal in a GCD domain, and suppose z,y € I. Show that "the” GCD
d of x and y belongs to I. Hence show that I is principal. Finally, deduce that a GCD domain is a
Dedekind domain if and only if it is a PID.

1ER]. We need some new theories to prove [ is finitely generated.

e 4.75. R 2K, K 2Emsik. R o XMe K —4 R-17# M #HE
eM C R, XA =€ Row #0 Mor. Rl s X ERsg (AR EEE) 2aoUE. &
M 2—5 8, AR aM C R 2 € K INESILH (R: M).

K BJ—A> R-TH% M nfgnl PR (invertible ideal), WIHRAEAE K #—4 R-TH N {§if5
MN = R. N 22— H N =(R: M).

i 4.76. W] AR LA FRAE Y .

. B 1 =" mun;, XFEVe € Mo =12 = (3, miny)z = Y (niz)m; 2 RAEK
Ego D

findd 4.77. oy XHEAR M ST

FER. R M ORATEAY, AR 1= > myng, BA mi BT M. EX fi: M — R fi(m) = nym,
W om =3 fi(m)ym;. §4.27, W15 M 2850,

W M OB, I2AAE m M fi € Hom(M, R) 45 m =3 film)m;. HE—1be M,
2 ki = fi(b)/bo MMER m e M, & m=p/q, b=r/s, p,q,r,s € R, H2 mfi(b)sq = pfi(r) =
filpr) = rfi(p) = sbfi(gm) = sbqfi(m), A mfi(b) = bfi(m), XF: kim = fi(m). M
kM C Ro % fi(), -+, fu(b) AR 0, BEHPE m =" fi(m)m; = k;mm,;, XFEH 1= km,,
MM M w] 3, O

g 4.78. R RSB EIARE ALY .

Let I = (a1, -+ ,an), let d be the ged(ay,- - ,a,). And we have I is invertible, that is, there
exists J such that J = (R : I) is a submodule of K. For all z/y € K, (z,y) =1, z/y € (R:I) &
za;/y € R,Vi & yla;z,Vi < y|ged(zay, - -+ ,xa,) = xd.

Then we need a lemma of GCD domain: If ged(a,b) = 1 and albe, then a|c. The proof is easy:

since ged(ac, be) = ¢, we have alc.

By the lemma, we have y|zd < y|d, then J =y 'R. Then 1 = 1/d(>_ z;a;), that is d = >_ z;a; €
I. Then I = Rd is principal.

Then GCD domain is a Dedekind domain if and only if every ideal is projective, this is equivalent

to every ideal is principal ideal. O

9. The following is a theorem from commutative algebra:

Suppose R is a UFD, and not a field. Then R is a PID if and only if the Krull dimension of R is

equal to one.

Prove the analogous result with the word "Krull” replaced by "weak”.

1ER]. Firstly we prove the theorem in commutative algebra.
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If R is PID, then for any prime ideal’s chain 0 C (p) € (¢q), we have ¢|p, hence p = g,
contradiction. Then the Krull dimension of R is equal to one.

If the Krull dimension of R is equal to one, then every nonzero prime ideal is maximal, then
every prime ideal is principal.

Then we can get the result by the following lemma:

A ring is a principal ideal ring if and only if every prime ideal is principal.

1E8f. Let S be the ideals which are not principal, assume S # &. By Zorn’s lemma, there’s a
maximal element [ in S. If I is not prime, then there exists ab € I and a ¢ I, b ¢ I. Hence
(a)+1,(b)+1I¢ S, thatis, (a)+1 = (z), (b)+1I = (y). Then (zy) = (ab)+ ((a)+ (b)) [+ =1,

contradiction. O

Then for the "weak” one:

If Ris UFD and W — dim R =1, then 4.25 deduces F — dim I = 0 for all finitely generated ideal
I. Hence it’s flat. UFD is GCD domain, hence finitely generated ideal is principal. O

10.Prove the module law: If A, B and C are submodules of D, with A C C, then A+ (BNC) =
(A+B)ncC.

LEBR . It’s trivial. O
11. Suppose B; € pM. Show that P — dim (& B;) = sup(P — dim B;).
1ER]. This is deduces by chapter 3, exercise 11. O

12. Suppose R is an integral domain and suppose a and b are nonzero and are nonunits in R. Set
R = R/Rab, and if z € R, set = € R.

1. Show that Rb = R/Ra
2. Show that the following are equivlant:

e R/Ra is R-projective

e Ra+Rb=R
e Ra+ Rb= R and Ran Rb = Rab
e« Ra®p Rb=R

3. Show that if Ra + Rb # R, then R has infinite weak dimension.

4. Compute Tor®(R/Ra, R/Ra) for the case R = Z[z], a =z, b=2

JERA. 1. For all x € R, let f maps Z to Z + bR. If & € bR, then = € aR, hence Ker(f) = aR.
2. (1) = (4) = (3) = (2) is trivial, and (2) = (3) = (4) = (1) is also obvious enough.

3. R/Ra = Rb is not R-projective, then Tor,(R/Ra, R/Ra) # 0, similarly Tor,(R/Rb, R/Rb) #
0, hence Tors,,, 1 (R/Ra, R/Ra) # 0 by the chapter 3, exercise 9. Then R has infinite weak dimension.

4. Use the chapter 3, exercise 9. O
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13. Suppose P is projective and finitely generated in g M, and suppose C' € g M. Show that P*®C —

Hom(P, C) is an isomorphism.

1ER]. We first prove that P* is projective. Let R™ is the free finitely generated module contains P,
then P is the direct summand. Then Hom(P, R) is the direct summand of Hom(R", R) = R"™, hence

projective.

P* and P are finitely generated projective. Then for all free resolution of C: --- — F; —
Fy — C — 0, we can replace F; with P* ® F; and Hom(P, F;). Since for free module F' we have
P*® F =2 Hom(P, F'), then by 5-lemma the result is true. O

14. Suppose P —dim B = N > n. Show that the nth kernel of any projective resolution of B has

projective dimension N — n.

1E8f. For any projective resolution of B
o= PP == F—+B—=0
this induces a projective resolution of Im(P, — Pj_1)

—)Pk*)Im(Pk*)Pkfl)*)O
Then by 4.13, P — dim Im(P, — P,_1) = N — k O
15. Analytical similar objects can be algebraically quite different.

1. Let R = C*°(R). Let M be the maximal ideal {f € R: f(0) = 0}. Show that P — dim R/M = 1.
2. Let R = C(R). Let M be the maximal ideal {f € R: f(0) = 0}. Show that P —dim R/M > 1.
1ER]. 1. We have projective resolution
0 RIS RO R S0
then P, = 0 when k£ > 1, then we can obtain P —dim R/M =1 by 4.13.
The resolution is exact since f(0) = 0= f = z(f(0) + %f”(O)x +-0).

2. If P —dim R/M <1, then P — dim M = 0, hence M is projective, hence for all I is an ideal of
R we have 0 = Tory (R/I,M) =Ker(I® M — IM) =0, i.e. I ® M =M. Therefore M @ M = M?>.
But obviusly there exists f,g € M such that f #0, g # 0 but f® g~ fg=0. O

5 Change of Rings

5.1 Computational Considerations

E X 5.1. A covariant functor F : M — M is called "strong additivity”, if F(&B;) = @ F(B;).

@ 5.2. Suppose F' : gM — rM is an exact, strongly additive covariant functor. Then for all
B e sM:
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1. P—dim gF(B) <P —dim sB + P —dim gF(S5)

9. F — dim pF(B) <P — dim B + F — dim zF(S)
1ERf. If B is free, then B = @S and P — dim gB = 0, hence F(B) = @F(S). Since chapter 4 erercise
11 we have P — dim p @ F(S) = P — dim gF'(S), or zero if the index set is empty.

If B is projective, then P — dim B = 0, and B&C = S is free. Then we have P — dim zF(B) <
P —dim gpF(B)® F(C) =P —dim gpF(B® C) <P —dim gF(S) by the first case.

If P—dim ¢B = o0, it’s trivial. If P —dim B =n,let 0 - P, —» P,_1 — --- = Py — B is the
projective resolution, then 0 — F(P,) — --- — F(P)) — F(B) — 0 is exact. Then by 4.11 and the
second case, we have P —dim rF(B) =P —dim rF(P,) + n <P —dim gF(S) + n. O

X 5.3. If B€ gM, and B’ is a submodule, define the "Supremal Projective Dimension” of (B’, B)

as follows:

SP — dim (B’, B) = sup{P — dim C : C is a submodule of B, and C D B'}
Set SP — dim B = SP — dim (0, B).
@ 5.4, If LG — dim R > 0, then LG —dim R =1+ SP — dim R.

3 5.5. Suppose B € g M, B’ is a submodule of B, and B” is a submodule is a submodule of B”.
Then
SP — dim (B”, B) = max{SP — dim (B", B'),SP — dim (B, B)}

1ERf. Obviously we have SP — dim (B”, B) > max{SP — dim (B”, B’),SP — dim (B’, B)}.

If the inequality is strict, then there exists C' satisfies

P —dim C > max{SP — dim (B", B"),SP — dim (B’, B)} > max{P — dim C N B, P — dim C + B’}

But this cannot happen, choose n such that P — dim C > n > max{P — dim CNB’,P — dim C+
B’} and make D satisfy Ext"(C,D) # 0, hence Ext"(C + B’,D) = Ext"(C N B’,D) = 0. But
chapter 3, exercise 12 gives an exact sequence 0 = Ext"(C + B’, D) — Ext"(C, D) ® Ext"(B’, D) —
Ext"(C' N B’,D) =0, a contradiction. O

Hig 5.6. I LG—dim R > 0,and 0 = Iy C I; C --- C I, = R is a chain of left ideals in R, then
LG — dlm R =1 + maX{SP — dlm (Ij_lm, I])}
s 5.7. Suppose B,C € gM, then

SP —dim (B @ C) = max{SP — dim B,SP — dim C'}

1ER]. We have SP — dim (B ® C) = max{SP — dim (B®0),SP —dim (B&0, B& C)}. But any sub-
module between B0 and B&C' coresponds to a submodule of C'; so any module between B®0 and B
C has the form B@ C’. Since P — dim (B& C’) = max{P — dim B,P — dim C'}, then SP — dim (B&®
0, B&C) = max{P — dim B,SP — dim C}. Hence SP — dim (B®C') = max{SP — dim B,SP — dim C'}.
O

© F.P. (1800010614@pku.edu. cn) 48 2022 &



e N

School of Mathemati

5 CHANGE OF RINGS

Hig 5.8. f LG —dim R > 0, and if R = 1 ®- - - @1, is a direct sum of left ideals, then LG — dim R =
1+ SP —dim R =1+ max{SP — dim I,}.

@ 5.9. Suppose ¢ : R — Risa surjective ring homomorphism, and suppose R is R-projective.
Then P — dim RB:P—dim RB for all B € M.

JE8]. We can infer P —dim B < P —dim RB from 5.2, hence all R-projective modules are R-
projective.

Suppose B is R-projective. Suppose Pisa R—projective and there exists a surjective 7 : P
B. As two projective R-modules, B is the direct summand of P. Thus there exists an R-module
homomorphism 7 : B — P satisfying 77 = i 5 ¢ is surjective gives 1) is an R-module homomorphism,

hence B is a direct summand as R-modules. Hence B is R-projective <— Bis R—projrctive.

In general, it is easily observed by 4.13 and the previous conclusion. O
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