Class Field Theory - Milne

https://phanpu.github.io/

February 2023

Contents

1	Loc	al Class Theory: Lubin-Tate Theory	1
	1.1	Statements of the Main Theorems	1
		1.1.1 Outline of the proofs of the main theorems	4
2	The	e Cohomology of Groups	4
	2.1	Cohomology	4
	2.2	Homology	10
	2.3	The Tate group	12
3	Loc	al Class Field Theory: Cohomology	17
	3.1	The Cohomology of Unramified Extensions	17
	3.2	The Cohomology of Ramified Extensions	19
	3.3	The Local Artin Map	20
	3.4	Hilbert Symbol	21
	3.5	The existence theorem	23
4	Bra	uer Groups	24
	4.1	Simple algebras; semisimple modules	24
	4.2	Definition of the Brauer Group	25
	4.3	The Brauer group and cohomology	27
	4.4	The Brauer groups of special fields	28
5	Glo	bal Class Field Theory: Statements of the Main Theorems	28
	5.1	Ray Class Groups	28
	5.2	L-series and the Density of Primes in Arithmetic Progressions	30

	5.3	The Main Theorems in Terms of Ideals	30
	5.4	Ideles	32
	5.5	The Main Theorem in Terms of Ideles	35
6	L-se	eries and the Density of Primes	36
	6.1	Dirichlet series and Euler products	36
	6.2	Convergence Results	36
	6.3	Density of the Prime Ideals Splitting in an Extension	37
	6.4	Density of the Prime Ideals in an Arithmetic Progression	37
_	~ 1		
7	Glo	bal Class Field Theory: Proofs of the Main Theorems	38
7	Glo 7.1	bal Class Field Theory: Proofs of the Main Theorems Outline	38 38
7	Glo 7.1 7.2	bal Class Field Theory: Proofs of the Main Theorems Outline The Cohomology of Ideles	38 38 38
7	Glo 7.1 7.2 7.3	bal Class Field Theory: Proofs of the Main Theorems Outline The Cohomology of Ideles The Cohomology of the Units	 38 38 38 40
7	Glo 7.1 7.2 7.3 7.4	bal Class Field Theory: Proofs of the Main Theorems Outline The Cohomology of Ideles The Cohomology of the Units Cohomology of the Idele Classes I: The first Inequality	 38 38 38 40 41
7	Glo 7.1 7.2 7.3 7.4 7.5	bal Class Field Theory: Proofs of the Main Theorems Outline	 38 38 38 40 41 41
7	Glo 7.1 7.2 7.3 7.4 7.5 7.6	bal Class Field Theory: Proofs of the Main Theorems Outline	 38 38 38 40 41 41 42

1 Local Class Theory: Lubin-Tate Theory

Proposition 1.0.1. A local field K is a field that is locally compact with respect to a nontrivial absolute value. Thus it is

- a finite extension of \mathbb{Q}_p for some p
- a finite extension of the field of Laurent series $\mathbb{F}_p((T))$
- \mathbb{R} or \mathbb{C}

Remark 1.0.2. Some notations: when K is non-Archimedean, its residue field has characteristic p > 0 and order q (a power of p), the ring of integers in K is denoted by \mathcal{O}_K (or A), its maximal ideal by \mathfrak{m}_K (or just \mathfrak{m}), and its group of units by \mathcal{O}_K^* (or U_K). A generator (note that \mathcal{O}_K is an DVR and hence is a PID) of \mathfrak{m} is called a prime element of K (or a uniformizer or a local uniformizing parameter). If π is a prime element of K, then every $a \in K^*$ can be written uniquely as the form $a = u\pi^m$ with $u \in \mathcal{O}_K^*$ and $m \in \mathbb{Z}$. Hence $K^* = \mathcal{O}_K^* \times \pi^{\mathbb{Z}}$. We define $\operatorname{ord}_K(a) = m$. The normalized absolute value on K is defined by $|a| = q^{-\operatorname{ord}_K(a)}$.

We let K^{al} denote a fixed algebraic closure of K (or separable algebraic closure in the case that K has characteristic p > 0). Both ord_K and $|\cdot|$ have unique extensions on K^{al} . Let K^{ab} denote the union of all Abelian finite extension of K, it is again a Abelian extension with Galois group is the quotient of $\operatorname{Gal}(K^{al}/K)$ by the closure of its commutator subgroup.

1.1 Statements of the Main Theorems

Proposition 1.1.1. Let *L* be a finite unramified extension of *K*. Then $\operatorname{Gal}(L/K) \cong \operatorname{Gal}(l/k)$ and hence is cyclic, generated by the unique element $\sigma = \operatorname{Frob}_{L/K}$ such that $\sigma \alpha \equiv \alpha^q \pmod{\mathfrak{m}_L}$ for all $\alpha \in \mathcal{O}_L$, where $q = |\mathcal{O}_K/\mathfrak{m}_K|$.

Theorem 1.1.2 (Local Reciprocity Law). For every non-Archimedean local field K, there exists a unique homomorphism

$$\phi_K : K^* \to \operatorname{Gal}(K^{\operatorname{ab}}/K)$$

with the following properties:

- for every prime element π of K and every finite unramified extension L of K, $\phi_K(\pi)$ acts on L as $\operatorname{Frob}_{L/K}$.
- for every finite Abelian extension L of K, $\operatorname{Nm}_{L/K}(L^*)$ is contained in the kernel of $\mathfrak{a} \mapsto \phi_K(a)|_L$, and ϕ_K induces an isomorphism

$$\phi_{L/K}: K^*/\operatorname{Nm}_{L/K}(L^*) \to \operatorname{Gal}(L/K)$$

In particular $(K^* : \operatorname{Nm}_{L/K}(L^*)) = [L : K].$

We call ϕ_K and $\phi_{L/K}$ the local Artin maps for K and L/K. They are often also called the local reciprocity mas and denoted by rec_K and $\operatorname{rec}_{L/K}$, and $\phi_{L/K}$ is often called the norm residue map or symbol and denoted $a \mapsto (a, L/K)$.

Remark 1.1.3. The right hands of the isomorphisms

$$\phi_{L/K}: K^*/\operatorname{Nm}_{L/K}(L^*) \to \operatorname{Gal}(L/K)$$

form an inverse system $(\operatorname{Gal}(L/K), \supseteq)$. Therefore, there is an isomorphism between the completion of the left hand and the inverse limit

$$\hat{\phi}_K : \widehat{K^*} \to \operatorname{Gal}(K^{\operatorname{ab}}/K)$$

where the topology of the completion $\widehat{K^*}$ is determined by the fundamental system of neighborhoods of 1 formed by the norm groups. This topology is called by the norm topology.

Remark 1.1.4. If $L = K^{\text{un}}$ the unramified closure of K, clearly we have

$$\operatorname{Gal}(K^{\mathrm{un}}/K) \cong \operatorname{Gal}(\bar{k}/k) \cong \lim(\mathbb{Z}/n\mathbb{Z}) = \hat{\mathbb{Z}}$$

Then the first condition can be re-stated as: $\phi_K(\pi)$ act as Frob_K on K^{un} , where $\operatorname{Frob}_K \mapsto \sigma$: $(x \mapsto x^q)$.

Remark 1.1.5. When L/K is finite and unramified, $\operatorname{Gal}(L/K)$ is a cyclic group generated by $\phi_K(\pi)|_L = \operatorname{Frob}_{L/K}$, thus for any $a = u\pi^k \in K^*$ $(u \in \mathcal{O}_K^*, k \in \mathbb{Z})$ we have $\phi_K(a)|_L = \operatorname{Frob}_{L/K}^k$. In particular, for $a \in \mathcal{O}_K^*$, $\phi_K(a)|_L$ acts trivially on L, that is, $\mathcal{O}_K^* \subseteq \operatorname{ker}(\phi_{L/K}) = \operatorname{Nm}_{L/K}(L^*)$.

Note that

$$\mathcal{O}_K^* \supseteq 1 + \mathfrak{m}_K \supseteq 1 + \mathfrak{m}_K^2 \supseteq \cdots$$

form a fundamental system of neighborhoods of 1 in \mathcal{O}_K^* . If a finite Abelian extension L is unramified over K, then we say L/K has conductor 0. Otherwise, the smallest f such that $1 + \mathfrak{m}^f \subseteq \ker(\phi_{L/K})$ is called the conductor of L/K.

In the following we will introduce the local existence theorem, and then we obtain a fundamental system of neighborhoods of 1

$$(1 + \mathfrak{m}^n) \cdot \langle \pi^m \rangle \cong (1 + \mathfrak{m}^n) \times m\mathbb{Z}$$
$$\subseteq K^* = \mathcal{O}_K^* \cdot \pi^{\mathbb{Z}} \cong \mathcal{O}_K^* \times \mathbb{Z}$$

then $\widehat{K^*} \cong \mathcal{O}_K^* \times \hat{\mathbb{Z}}$. The identify map

 $K^*(the usual topology) \to K^*(the norm topology)$

is continuous, thus there is a natural commutative diagram

The decomposition $\operatorname{Gal}(K^{\operatorname{ab}}/K) \cong \widehat{K^*} = \mathcal{O}_K^* \cdot \pi^{\widehat{\mathbb{Z}}}$ depends on the choice of π . If we fix a prime element π , then K^{ab} has the decomposition

$$K^{\rm ab} = K_{\pi} \cdot K^{\rm un}$$

where K_{π} is the subfield fixed by $\phi_K(\pi)$ and K^{un} is exactly the field fixed by $\phi_K(\mathcal{O}_K^*)$. Clearly K_{π} is the union of all finite Abelian extensions L/K such that $\pi \in \text{Nm}(L^*)$. For example.

$$\mathbb{Q}_p^{\mathrm{ab}} = (\bigcup_n \mathbb{Q}[\zeta_{p^n}]) \cdot (\bigcup_{(m,p)=1} \mathbb{Q}[\zeta_m])$$

Corollary 1.1.6. (a) The map $L \mapsto \text{Nm}(L^*)$ is a bijection from the set of finite Abelian extensions of K onto the set of norm groups in K^* .

- (b) $L \subseteq L' \iff \operatorname{Nm}(L') \supseteq \operatorname{Nm}(L)$
- (c) $\operatorname{Nm}((L \cdot L')^*) = \operatorname{Nm}(L) \cap \operatorname{Nm}(L')$
- (d) $\operatorname{Nm}((L \cap L')^*) = \operatorname{Nm}(L^*) \cdot \operatorname{Nm}(L'^*)$
- (e) Every subgroup of K^* containing a norm group is itself a norm group.

Lemma 1.1.7. Let L be an extension of K. If $Nm(L^*)$ is of finite index in K^* , then it is open.

Proof. We first show that \mathcal{O}_K is compact. Recall that a metric space is compact if and only if it is complete and totally bounded. The completeness of \mathcal{O}_K is from the definition. Note that any element in \mathcal{O}_K has the form

$$a = s_0 + s_1\pi + \dots + s_n\pi^n + \dots$$

there are finite elements

$$s_0 + s_1\pi + \dots + s_n\pi^n$$

such that a is within $|\pi^{n+1}|$ of such an element. Therefore \mathcal{O}_K is totally bounded and then is compact.

As a closed subset of \mathcal{O}_K , \mathcal{O}_K^* is also compact. Similarly \mathcal{O}_L^* is compact in L. Then $\operatorname{Nm}(\mathcal{O}_L^*)$ is a compact subgroup of K^* and hence a closed subgroup of \mathcal{O}_K^* . One can check that

$$\operatorname{Nm}(L^*) \cap \mathcal{O}_K^* = \operatorname{Nm}(\mathcal{O}_L^*)$$

Then there is a natural injective homomorphism

$$\mathcal{O}_K^*/\mathrm{Nm}(\mathcal{O}_L^*) \hookrightarrow K^*/\mathrm{Nm}(L^*)$$

Thus $\operatorname{Nm}(\mathcal{O}_L^*)$ is closed of finite index in \mathcal{O}_K^* , it is then an open subgroup of \mathcal{O}_K^* . Note that \mathcal{O}_K^* itself is a open subgroup of K^* (since the valuation $|\cdot|$ is discrete and then we may choose ϵ such that $\mathcal{O}_K^* = \bigcup_{x \in \mathcal{O}_K^*} \{y : |y - x| < \epsilon\}$), $\operatorname{Nm}(\mathcal{O}_L^*)$ is open in K^* . Therefore, $\operatorname{Nm}(L^*)$ is a subgroup containing an open subgroup, hence is open as the union of open cosets.

Theorem 1.1.8 (Local Existence Theorem). The norm groups (the set of the subgroups like $Nm(L^*)$ for finite Abelian extension L) in K^* are exactly the open subgroups of finite index.

Remark 1.1.9. If K has characteristic 0, every subgroup $H \subseteq K^*$ of finite index is open, but this is not true for K with characteristic p > 0.

Remark 1.1.10. If L/K is a finite Abelian extension with conductor 0, that is, $\mathcal{O}_K^* \subseteq \operatorname{Nm}(L^*)$. Since $\operatorname{Nm}(L^*)$ has finite index in K^* , there exists a minimal number n such that $\pi^n \in \operatorname{Nm}(L^*)$, it is not hard to check that in this case $\operatorname{Nm}(L^*) = \bigcup_{k \in \mathbb{Z}} \mathcal{O}_K^* \pi^{kn}$. Consider the n-dimensional unramified extension L'/K, its norm group $\operatorname{Nm}(L'^*)$ is also the group $\bigcup_{k \in \mathbb{Z}} \mathcal{O}_K^* \pi^{kn}$, then $\operatorname{Nm}(L'^*) = \operatorname{Nm}(L^*)$, which implies L = L'.

1.1.1 Outline of the proofs of the main theorems

Theorem 1.1.11. The mapping ϕ_K described in the "Local Reciprocity Law" is unique.

Proof. If the mapping ϕ_K exists and the "Local Existence Theorem" holds, let π be a prime element of \mathcal{O}_K and we may choose a field $K_{\pi,n}$ such that $\operatorname{Nm}(K_{\pi,n}) = (1 + \mathfrak{m}^n) \langle \pi \rangle$, then the field $K_{\pi} = \bigcup_{n \geq 1} K_{pi,n}$. Note that $K^{\operatorname{ab}} = K_{\pi} \cdot K^{\operatorname{un}}$, and $\phi_K(\pi)$ acts K^{un} as Frob_K , the action of $\phi_K(\pi)$ on K^{ab} is determined. Hence $\phi(\pi) = \phi'(\pi)$ for any two mapping ϕ, ϕ' satisfying the conditions and any π . Note that $\{\pi : \pi \text{ is a prime element}\}$ generates the whole multiplicative group K^* , we obtain that $\phi = \phi'$.

For the existence of ϕ_K and the proof of the "Local Existence Theorem", we will give sketches of three proofs, which will be filled up in the following sections.

Sketch of proof I: from Lubin-Tate and Hasse-Arf. The theory of Lubin and Tate constructs the fields $K_{\pi,n}$ for each π , and thus we obtain the structure of K_{π} . And the theory also provides the homomorphism $\phi_{\pi} : \mathcal{O}_{K}^{*} \to \operatorname{Gal}(K_{\pi}/K)$. Moreover, it shows that it can be uniquely extended to $K^{*} \to \operatorname{Gal}(K_{\pi} \cdot K^{\mathrm{un}}/K)$ such that $\phi(\pi)|_{K^{\mathrm{un}}} = \operatorname{Frob}_{K}$ are independent of π .

We can check that the conclusion holds for $K_{\pi} \cdot K^{\text{un}}$, thus it remains to show that $K^{\text{ab}} = K_{\pi} \cdot K^{\text{un}}$. This follows from the Hasse-Arf theorem.

Sketch of proof II: from Lubin-Tate and Cohomology.

Sketch of proof III: using Cohomology and Hilbert symbol.

2 The Cohomology of Groups

2.1 Cohomology

Definition 2.1.1. Let $H \subseteq G$ be groups. For an H-module M, define $\operatorname{Ind}_{H}^{G}$ to be the set of maps (not necessarily homomorphisms) $\varphi : G \to M$ such that $\varphi(hg) = h\varphi(g)$ for all $h \in G$. Then $\operatorname{Ind}_{H}^{G}(M)$ becomes a G-module with $(g\varphi)(x) = \varphi(xg)$. A homomorphism $\alpha : M \to M'$ induces a homomorphism

$$\varphi \mapsto \alpha \circ \varphi : \operatorname{Ind}_{H}^{G}(M) \to \operatorname{Ind}_{H}^{G}(M')$$

Remark 2.1.2. The category of G-modules can be identified with the category of the $\mathbb{Z}[G]$ -modules **Lemma 2.1.3.** (a) We have $\operatorname{Hom}_G(M, \operatorname{Ind}_H^G(N)) \cong \operatorname{Hom}_H(M, N)$

- (b) The functor $\operatorname{Ind}_{H}^{G}$ is exact.
- (c) Let ϕ be the natural map

$$\phi: \operatorname{Ind}_{H}^{G}(N) \to N$$
$$\varphi \mapsto \varphi(1)$$

this is an *H*-homomorphism. Then any *H*-homomorphism $M \to N$ can be lifting to a *G*-homomorphism $M \to \operatorname{Ind}_{H}^{G}(N)$.

Definition 2.1.4. If $H = \{1\}$, an *H*-module is just an Abelian group. Thus $\operatorname{Ind}_{H}^{G}(M) = \{\varphi : G \to M\} = \operatorname{Hom}(\mathbb{Z}[G], M)$. A *G*-module is said to be induced if it is isomorphic to this for some Abelian group *M*.

Proposition 2.1.5. The category of *G*-modules has enough injectives. Indeed, for any injective element *I* in the category of Abelian groups, $\text{Ind}^{G}(I)$ is injective as *G*-modules.

Definition 2.1.6. Let M be a G-module, and choose an injective resolution

$$0 \to M \to I^0 \xrightarrow{d^0} I^1 \xrightarrow{d^1} \to \cdots$$

Then it induces a complex

$$0 \xrightarrow{d^{-1}} (I^0)^G \xrightarrow{d^0} (I^1)^G \to \cdots$$

Define the rth cohomology group of G with coefficients in M to be

$$H^r(G, M) = \operatorname{Ker}(d^r) / \operatorname{Im}(d^{r-1})$$

Proposition 2.1.7. We have $H^0(G, M) = M^G = \text{Hom}_G(\mathbb{Z}, M)$, where \mathbb{Z} is treated as a trivial *G*-module.

Proposition 2.1.8. If M is injective, then for r > 0 we have $H^r(G, M) = 0$.

Proposition 2.1.9 (Shapiro's lemma). Let H be a subgroup of G. For every H-module N, there is a canonical isomorphism

$$H^r(G, \operatorname{Ind}_H^G(N)) \to H^r(H, N)$$

for all $r \geq 0$.

Corollary 2.1.10. If M is an induced G-module, then $H^r(G, M) \cong H^r(\{1\}, M_0) = 0$ for all r > 0.

Definition 2.1.11. Let $P_r, r \ge 0$ be the free \mathbb{Z} -module with basis the (r+1)-tuples (g_0, \dots, g_r) of elements of G, endow the action of G such that

$$g(g_0,\cdots,g_r)=(gg_0,\cdots,gg_r)$$

Note that P_r is also free as a $\mathbb{Z}[G]$ -module, with basis $\{(1, g_1, \cdots, g_r) | g_i \in G\}$. Define a homomorphism

$$d_r: P_r \to P_{r-1}$$
$$(g_0, \cdots, g_r) \mapsto \sum_{i=0}^r (-1)^i (g_0, \cdots, \hat{g}_i, \cdots, g_r)$$

Then (P_r, d_r) defines a complex

$$\cdots P_r \xrightarrow{d_r} P_{r-1} \to \cdots \to P_0$$

Let $\epsilon: P_0 \to \mathbb{Z}$ be the map sending every basis element (g_0) to 1.

Proposition 2.1.12. The complex

$$P_{\bullet} \xrightarrow{\epsilon} \mathbb{Z} \to 0$$

is exact.

Proposition 2.1.13. P_{\bullet} is actually a projective resolution of \mathbb{Z} , then we have

$$H^r(G, M) \cong H^r(\operatorname{Hom}_G(P_{\bullet}, M))$$

Remark 2.1.14. Note that the elements in $\operatorname{Hom}_G(P_r, M)$ can be identified with functions φ : $G^{r+1} \to M$ fixed by G, i.e.,

$$\varphi(gg_0,\cdots,gg_r)=g(\varphi(g_0,\cdots,g_r))$$

Thus $\operatorname{Hom}_G(P_r, M)$ can be identified with the set $\tilde{C}^r(G, M)$ of φ 's satisfying this condition. Such φ are called homogeneous r-cochains of G with values in M. The boundary map $\tilde{d}^r : \tilde{C}^r(G, M) \to \tilde{C}^{r+1}(G, M)$ induced by d^{r+1} is

$$(\tilde{d}^r\varphi)(g_0,\cdots,g_{r+1})=\sum_{i=1}^{i}(-1)^i\varphi(g_0,\cdots,\hat{g}_i,\cdots,g_{r+1})$$

Then the proposition above says that

$$H^r(G, M) \cong \operatorname{Ker}(\tilde{d}^r) / \operatorname{Im}(\tilde{d}^{r-1})$$

Let $C^r(G, M)$ be the group of inhomogeneous r-cochains of G with values in M consisting of all maps $\varphi: G^r \to M$. Set $G^0 = \{1\}$ and hence $C^0(G, M) = M$. Define

$$d^r: C^r(G, M) \to C^{r+1}(G, M)$$

by

$$(d^{r}\varphi)(g_{1},\cdots,g_{r+1}) = g_{1}\varphi(g_{2},\cdots,g_{r+1}) + \sum_{j=1}^{r} (-1)^{j}\varphi(g_{1},\cdots,g_{j}g_{j+1},\cdots,g_{r+1}) + (-1)^{r+1}\varphi(g_{1},\cdots,g_{r})$$

Define

$$Z^{r}(G, M) = \operatorname{Ker}(d^{r})$$
$$B^{r}(G, M) = \operatorname{Im}(d^{r-1})$$

Note that for $\varphi \in \tilde{C}^r(G, M)$, it only depends on the values of $(1, g_0^{-1}g_1, \cdots, g_0^{-1}g_r)$, or equivalently, φ can one-to-one correspond to a function on the set $\{(g_1, g_1g_2, \cdots, g_1 \cdots g_r) | g_i \in G\}$. If we make the coordinate transformation

$$\varphi'(g_1,\cdots,g_r)=\varphi(1,g_1,g_1g_2,\cdots,g_1\cdots g_r)$$

we obtain an element $\varphi' \in C^r(G, M)$. And we have

$$\begin{aligned} (d^{r}\varphi')(g_{1},\cdots,g_{r+1}) &= g_{1}\varphi'(g_{2},\cdots,g_{r+1}) + \sum_{j=1}^{r} (-1)^{j}\varphi'(g_{1},\cdots,g_{j}g_{j+1},\cdots,g_{r+1}) + (-1)^{r+1}\varphi'(g_{1},\cdots,g_{r}) \\ &= g_{1}\varphi(1,g_{2},g_{2}g_{3},\cdots,g_{2}\cdots g_{r+1}) + \sum_{j=1}^{r} (-1)^{j}\varphi(1,g_{1},\cdots,g_{1}\cdots g_{j-1},g_{1}\cdots g_{j}g_{j+1},\cdots,g_{1}\cdots g_{r+1}) \\ &+ (-1)^{r+1}\varphi(1,g_{1},g_{1}g_{2},\cdots,g_{1}\cdots g_{r}) \\ &= (\tilde{d}^{r}\varphi)'(g_{1},\cdots,g_{r+1}) \end{aligned}$$

Therefore, we build a bijection between (C^r, d^r) and $(\tilde{C}^r, \tilde{d}^r)$, and then

$$H^{r}(G, M) \cong Z^{r}(G, M)/B^{r}(G, M)$$

© F.P. (1800010614@pku.edu.cn)

2023.2

Example 1. We use the remark above to compute $H^1 = Z^1/B^1$. Compute that

$$B^{1}(G,M) = \operatorname{Im}(M = C^{0}(G,M) \xrightarrow{d^{0}} C^{1}(G,M)) = \{\varphi : G \to M | \varphi(g) = gm - m \text{ for some } m \in M\}$$
$$Z^{1}(G,M) = \{\varphi : G \to M | g_{1}\varphi(g_{2}) + \varphi(g_{1}) = \varphi(g_{1}g_{2})\}$$

We call the elements in $Z^1(G, M)$ the crossed homomorphism and the elements in $B^1(G, M)$ the principal crossed homomorphism.

In particular, if the action of G on M is trivial, i.e., gm = m. Then $B^1 = \{0\}$ and $Z^1 = Hom(G, M)$.

In particular, if G is generated by a single element σ , let φ be a crossed homomorphism. Note that

$$\varphi(\sigma^2) = \sigma\varphi(\sigma) + \varphi(\sigma)$$
$$\varphi(\sigma^3) = \sigma^2\varphi(\sigma) + \sigma\varphi(\sigma) + \varphi(\sigma)$$

Define a map $\operatorname{Nm}_G: M \to M$ via $m \mapsto \sum_{\sigma} \sigma m$, then $H^1(G, M) \cong \operatorname{Ker}(\operatorname{Nm}_G)/(\sigma - 1)M$.

Proposition 2.1.15. If L is a finite Galois extension of a field K, let G = Gal(L/K), then L and L^* become G-modules. We have $H^1(G, L^*) = 0$.

Proof. The group $Z^1(G, L^*)$ consists of all maps $\varphi : G \to L^*$ such that $\varphi(\sigma_2)^{\sigma_1} \cdot \varphi(\sigma_1) = \varphi(\sigma_1 \sigma_2)$, where $\sigma_i \in G$. Fix an element $a \in L^*$, and let $b = \sum_{\sigma \in G} \varphi(\sigma) a^{\sigma}$. We first suppose that $b \neq 0$. Then $b^{\tau} = \sum_{\sigma} \varphi(\sigma)^{\tau} \cdot a^{(\tau\sigma)}$. Compute that

$$\varphi(\tau)\tau b = \sum_{\sigma} \varphi(\tau)\varphi(\sigma)^{\tau} \cdot a^{(\tau\sigma)} = \sum_{\sigma} \varphi(\tau\sigma) \cdot a^{(\tau\sigma)} = b$$

That is, $\varphi(\tau) = b/\tau b$. Then φ is in $B^1(G, L^*)$.

It remains to show that there exists an element a for which $b \neq 0$. Indeed, if $\sum_{\sigma} \varphi(\sigma)\sigma$ is a zero map, by Artin theorem (see https://math.stackexchange.com/questions/2082648/pr oof-of-artins-theorem-linearly-independent-functions) every $\varphi(\sigma)$ is 0.

Corollary 2.1.16. Let L/K be a cyclic extension, and let σ generate $\operatorname{Gal}(L/K)$. If $\operatorname{Nm}_{L/K}a = 1$, then a is of the form $\sigma b/b$.

Proposition 2.1.17. With the same hypothesis above, we have $H^r(G, L) = 0$ for all r > 0.

Proof. Choose an element α such that $\{\sigma \alpha : \sigma \in \text{Gal}(L/K)\}$ forms a normal basis of L/K (see https://en.wikipedia.org/wiki/Normal_basis). Thus there exists an isomorphism of G-modules

$$\sum_{\sigma \in G} a_{\sigma} \sigma \mapsto \sum_{\sigma \in G} a_{\sigma} \sigma \alpha : K[G] \to L$$

But $K[G] = \operatorname{Ind}_1^G K$, thus $H^r(G, L) \cong H^r(1, K) = 0$ for r > 0.

Definition 2.1.18. Let M and M' respectively be G and G'-modules. Homomorphisms

$$\alpha: G' \to G, \quad \beta: M \to M'$$

are said to be compatible if

 $\beta(\alpha(g)m) = g(\beta(m))$

Then α and β induce a homomorphism of complexes

 $C^{\bullet}(G, M) \to C^{\bullet}(G', M'), \quad \varphi \mapsto \beta \circ \varphi \circ \alpha^r$

and hence homomorphisms

$$H^r(G,M) \to H^r(G',M')$$

Example 2. (a) Let H be a subgroup of G. For every H-module M, the map

$$\varphi \mapsto \varphi(1_G) : \operatorname{Ind}_H^G(M) \to M$$

is compatible with the inclusion $H \hookrightarrow G$, and the induced homomorphism

$$H^r(G, \operatorname{Ind}_H^G(M)) \to H^r(H, M)$$

is the isomorphism in Shapiro's lemma.

(b) Let α be the inclusion $H \hookrightarrow G$ and let β be the identify map on a G-module M. In this case we obtain the restriction homomorphisms

$$\operatorname{Res}: H^r(G, M) \to H^r(H, M)$$

They can also be constructed as follows: let $M \to \operatorname{Ind}_{H}^{G}(M)$ be the homomorphism sending m to the map $g \mapsto gm$, then the composition

$$H^r(G, M) \to H^r(G, \operatorname{Ind}_H^G(M)) \xrightarrow{\sim} H^r(H, M)$$

is exactly the restriction map.

(c) Let H be a normal subgroup of G and α the quotient map $G \to G/H$. Let β be the inclusion $M^H \hookrightarrow M$. In this case, we obtain the inflation homomorphisms

$$H^r(G/H, M^H) \to H^r(G, M)$$

(d)

(e) Let H be a subgroup of finite index of G, and let S be a set of left coset representatives for H in G, $G = \bigcup_{s \in S} sH$. Let M be a G-module. For any $m \in M^H$, $\operatorname{Nm}_{G/H} m \triangleq \sum_{s \in S} sm$ is independent of the choice of S, and is fixed by G. Thus we actually obtain a homomorphism $\operatorname{Nm}_{G/H} : M^H \to M^G$. This can be extended to a corestriction homomorphism

$$\operatorname{Cor}: H^r(H, M) \to H^r(G, M)$$

as follows: there is a canonical homomorphism of G-modules

$$\varphi \mapsto \sum_{s \in S} s\varphi(s^{-1}) : \operatorname{Ind}_H^G M \to M$$

and hence

$$H^r(H,M) \xrightarrow{\sim} H^r(G, \operatorname{Ind}_H^G M) \to H^r(G, M)$$

Proposition 2.1.19. Let H be a subgroup of G of finite index. The composite

$$\operatorname{Cor} \circ \operatorname{Res} : H^r(G, M) \to H^r(G, M)$$

is multiplication by (G:H).

Corollary 2.1.20. If (G:1) = m, then $mH^r(G, M) = 0$ for all r > 0.

Corollary 2.1.21. If G is finite and M is finitely generated as an Abelian group, then $H^r(G, M)$ is finite.

Proof. This is a finitely-generated group killed by |G|, thus, it is a finite group.

Corollary 2.1.22. We call the *p*-primary component of a Abelian group A the subgroup consisting of all elements killed by a power of p. Let G be a finite group and G_p its Sylow *p*-subgroup. For every *G*-module M, the restriction map

$$\operatorname{Res}: H^r(G, M) \to H^r(G_p, M)$$

is injective on the *p*-primary component of $H^r(G, M)$.

Proposition 2.1.23. Let *H* be a normal subgroup of *G*, and let *M* be a *G*-module. Let *r* be a positive integer. If $H^{j}(H, M) = 0$ for all *j* with 0 < j < r, then the sequence

$$0 \to H^r(G/H, M^H) \xrightarrow{\operatorname{Inf}} H^r(G, M) \xrightarrow{\operatorname{Res}} H^r(H, M)$$

is exact.

Proof. First we consider the case r = 1.

Obviously, the inflation map is an injection. For the second part, choose a $\varphi \in H^1(G, M)$ with $\varphi|_H = hm_0 - m_0$. Define $\varphi'(g) = \varphi(g) - (hm_0 - m_0)$. Then $\varphi' = \varphi$ in $H^1(G, M)$ and $\varphi'(H) = 0$.

Now we prove that φ' takes values in M^H . Recall that we have

$$\varphi'(hg) = h\varphi'(g) + \varphi'(h) = h\varphi'(g)$$
$$\varphi'(gh') = g\varphi'(h') + \varphi'(g) = \varphi'(g)$$

Since H is normal in G, we can make hg = gh'. Thus, $h\varphi'(g) = \varphi'(g)$.

Now we prove by induction on r.

In fact, let $M_1 = \text{Ind}_1^G(M_0)/M$, where M_0 here is M regarded as an Abelian group, we have

$$H^{r-1}(G, M_1) \cong H^r(G, M)$$

Then we can reduce the case r to the case r-1.

Corollary 2.1.24. If $\Omega \supseteq L$ are Galois extensions of K, then $H \triangleq \operatorname{Gal}(\Omega/L)$ is a normal subgroup of $G = \operatorname{Gal}(\Omega/K)$. Recall that $H^1(H, \Omega^*) = 0$, thus there is an exact sequence

$$0 \to H^2(G/H, L^*) \to H^2(G, \Omega^*) \to H^2(H, \Omega^*)$$

© F.P. (1800010614@pku.edu.cn)

2023.2

Proposition 2.1.25. There exists one and only one family of bi-additive pairings

$$(m,n) \mapsto m \cup n : H^r(G,M) \times H^s(G,N) \to H^{r+s}(G,M \otimes N)$$

defined for all G-modules M, N and all integers $r, s \ge 0$, satisfying the following conditions:

(a) these maps become morphisms of functors when the two sides are regarded as covariant bifunctors on $({\cal M},N)$

(b) for r = s = 0, the pairing is

$$(m,n) \mapsto M \otimes n : M^G \otimes N^G \to (M \otimes N)^G$$

(c) if $0 \to M' \to M \to M'' \to 0$ is an exact sequence of G-modules such that

$$0 \to M' \otimes N \to M \otimes N \to M'' \otimes N \to 0$$

is exact, then

$$(\delta m'') \cup n = \delta(m'' \cup n), \quad m'' \in H^r(G, M''), \ n \in H^s(G, N)$$

Here δ denotes the connecting homomorphism $H^r(G, M'') \to H^{r+1}(G, M')$ or $H^{r+s}(G, M'' \otimes N) \to H^{r+s+1}(G, M' \otimes N)$.

(d) if $0 \to N' \to N \to N'' \to 0$ is an exact sequence of G-modules such that

$$0 \to M \otimes N' \to M \otimes N \to M \otimes N'' \to 0$$

is exact, then

$$m \cup \delta n'' = (-1)^r \delta(m \cup n''), \quad m \in H^r(G, M), \ n'' \in H^s(G, N'')$$

Proposition 2.1.26. (a) $(x \cup y) \cup z = x \cup (y \cup z)$

(b)
$$x \cup y = (-1)^{rs} y \cup x$$

- (c) $\operatorname{Res}(x \cup y) = \operatorname{Res}(x) \cup \operatorname{Res}(y)$
- (d) $\operatorname{Cor}(x \cup \operatorname{Res} y) = \operatorname{Cor}(x) \cup y$
- (e) $\operatorname{Inf}(x \cup y) = \operatorname{Inf}(x) \cup \operatorname{Inf}(y).$

2.2 Homology

Definition 2.2.1. For a *G*-module *M*, let M_G be the quotient of *M* by the subgroup I_M generated by $\{gm - m | g \in G, m \in M\}$.

Proposition 2.2.2. The functor $M \mapsto M_G$ is right exact.

Proof. Assume that $0 \to M' \xrightarrow{\phi} M \xrightarrow{\varphi} M'' \xrightarrow{\psi} 0$ is exact.

If $\bar{b} \in \operatorname{Ker}(M_G \to M''_G)$, that is, $\varphi(b) \in I_{M''}$. Note that $\varphi(I_M) = \varphi(I_{M''})$, then $\varphi(b-b') = 0$ for some $b' \in I_M$. Then $b-b' \in \operatorname{Ker}(\varphi) = \operatorname{Im}(\phi)$. Suppose $\phi(a) = b-b'$. Thus $\bar{a} \mapsto \bar{b}$, i.e., $\operatorname{Ker}(M_G \to M''_G) = \operatorname{Im}(M'_G \to M_G)$.

For any $\bar{c} \in M''_G$, set $\varphi(b) = c$. Then $\bar{b} \mapsto \bar{c}$. Therefore, $M'_G \to M_G \to M''_G \to 0$ is exact.

(C) F.P. (1800010614@pku.edu.cn)

Definition 2.2.3. Let M be a G-module, and choose a projective resolution

$$\cdots P_2 \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \xrightarrow{d_0} M \to 0$$

of M. The homology group of

$$\cdots \to (P_2)_G \xrightarrow{d_2} (P_1)_G \xrightarrow{d_1} (P_0)_G \to 0$$

is $H^r(G, M) = \text{Ker}(d_r)/\text{Im}(d_{r+1})$ is called the homology of M.

Proposition 2.2.4. (a) $H_0(G, P) = M_G$

(b) If P is a projective G-module, then $H_r(G, P) = 0$ for all r > 0.

Proposition 2.2.5. There is a canonical isomorphism

$$H_1(G,\mathbb{Z}) \cong G^{ab} = G/[G,G]$$

Proof. Define the augmentation map

$$\mathbb{Z}[G] \to \mathbb{Z}, \quad \sum n_g g \mapsto \sum n_g$$

Its kernel is called the augmentation ideal I_G . Clearly I_G is a free \mathbb{Z} -submodule of $\mathbb{Z}[G]$ with basis $\{g-1|g \in G, g \neq 1\}$, and so

$$M/I_G M = M_G \cong H_0(G, M)$$

Consider the exact sequence

$$0 \to I_G \to \mathbb{Z}[G] \to \mathbb{Z} \to 0$$

Since the *G*-module $\mathbb{Z}[G]$ is projective, and so $H_1(G, \mathbb{Z}[G]) = 0$. Therefore we obtain an exact sequence

$$0 \to H_1(G, \mathbb{Z}) \to I_G/I_G^2 \to \mathbb{Z}[G]/I_G \to \mathbb{Z} \to 0$$

Note that the middle map $I_G/I_G^2 \to \mathbb{Z}[G]/I_G$ is zero, then we have

 $H_1(G,\mathbb{Z})\cong I_G/I_G^2$

and

$$\mathbb{Z}[G]_G = \mathbb{Z}[G]/I_G \cong \mathbb{Z}$$

Consider the map

$$G/[G,G] \rightarrow I_G/I_G^2, \quad g + [G,G] \mapsto g - 1 + I_G^2$$

this is well-defined since ab - 1 = a + b - 2 = ba - 1 in I_G/I_G^2 . To show this is an isomorphism, we may construct its converse. There is a natural homomorphism

$$I_G \to G^{ab}, \quad g-1 \mapsto g + [G,G]$$

Then it is obvious that the generators of I_G^2 , (g-1)(g'-1) sends to 1. Therefore it induces the inverse

 $I_G/I_G^2 \to G^{ab}$

Hence

$$H_1(G,\mathbb{Z})\cong G^{ab}$$

2.3 The Tate group

Definition 2.3.1. For a *G*-module *M*, the norm map $Nm_G : M \to M$ is defined to be

$$m\mapsto \sum_{g\in G}gm$$

We have $\operatorname{Im}(\operatorname{Nm}_G) \subseteq M^G$ and $I_G M \subseteq \operatorname{Ker}(\operatorname{Nm}_G)$. Therefore, the homomorphism

$$M \xrightarrow{\operatorname{Nm}_G} M$$

induces a natural homomorphism

$$H_0(G,M) = M/I_GM \xrightarrow{\operatorname{Nm}_G} H^0(G,M) = M^G$$

By computing its kernel and image we obtain an exact sequence

$$0 \to \operatorname{Ker}(\operatorname{Nm}_G)/I_G M \to H_0(G, M) \xrightarrow{\operatorname{Nm}_G} H^0(G, M) \to M^G/\operatorname{Nm}_G(M) \to 0$$

Define the Tate cohomology group

$$\hat{H}^{r}(G,M) = H^{r}_{T}(G,M) = \begin{cases} H^{r}(G,M), & r > 0\\ M^{G}/\mathrm{Nm}_{G}(M), & r = 0\\ \mathrm{Ker}(\mathrm{Nm}_{G})/I_{G}M, & r = -1\\ H_{-r-1}(G,M), & r < -1 \end{cases}$$

Thus the sequence above becomes

$$0 \to H_T^{-1}(G, M) \to H_0(G, M) \xrightarrow{\operatorname{Nm}_G} H^0(G, M) \to H_T^0(G, M) \to 0$$

Proposition 2.3.2. For any exact sequence of G-modules, we have a diagram

Note that the composition $H_1(G, M) \to H_0(G, M') \to H^0(G, M')$ is the zero map, then the image of $H_1(G, M)$ is contained in $H_T^{-1}(G, M')$. By snake lemma we have a new diagram

Thus we obtain a long exact sequence

$$\cdots \to H^r_T(G, M') \to H^r_T(G, M) \to H^r_T(G, M'') \to H^{r-1}_T(M') \to \cdots$$

Proposition 2.3.3. If M is induced, then $H^r_T(G, M) = 0$ for all $r \in \mathbb{Z}$.

Proposition 2.3.4. The functors Cor, Res can be uniquely extended to the Tate groups. The cup product can also extend uniquely.

Corollary 2.3.5. The Tate group $H^r_T(G, M)$ is killed by |G| for all r.

Now we turn to the cohomology of finite cyclic group.

Lemma 2.3.6. For every finite group G

- (a) $H^r_T(G, \mathbb{Q}) = 0$ for all $r \in \mathbb{Z}$
- (b) $H^0_T(G,\mathbb{Z}) = \mathbb{Z}/(G:1)\mathbb{Z}$ and $H^1(G,\mathbb{Z}) = 0$
- (c) there is a canonical isomorphism

$$\operatorname{Hom}(G, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\sim} H^2(G, \mathbb{Z})$$

Proof. (a) Since H_T^r is killed by |G|, and note that $\times m : H_T^r(G, \mathbb{Q}) \to 0 \hookrightarrow H_T^r(G, \mathbb{Q})$ can also be induced from the isomorphism $\times m : \mathbb{Q} \to \mathbb{Q}$, we have $H_T^T(G, \mathbb{Q})$ is exactly 0.

(b) We have $H^0_T(G,\mathbb{Z}) = \mathbb{Z}^G = \mathbb{Z}$, and the norm map is multiplication by |G|. Hence $H^0_T(G,\mathbb{Z}) = \mathbb{Z}/|G|\mathbb{Z}$. Moreover, $H^1_T(G,\mathbb{Z}) = \text{Hom}(G,\mathbb{Z}) = 0$.

(c) The exact sequence

$$0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0$$

induces that

$$0 = H^1(G, \mathbb{Q}) \to \operatorname{Hom}(G, \mathbb{Q}/\mathbb{Z}) = H^1(G, \mathbb{Q}/\mathbb{Z}) \to H^2(G, \mathbb{Z}) \to 0 = H^2(G, \mathbb{Q})$$

Then the isomorphism follows immediately.

Proposition 2.3.7. Let $G = \langle \sigma \rangle$ be a finite cyclic group. Then there is an isomorphism

$$H^r_T(G, M) \xrightarrow{\sim} H^{r+2}_T(G, M)$$

Proof. There is an exact sequence

$$0 \to \mathbb{Z} \xrightarrow{m \mapsto \sum_{g \in G} gm} \mathbb{Z}[G] \xrightarrow{\sigma - 1} \mathbb{Z}[G] \xrightarrow{\sigma \mapsto 1} \mathbb{Z} \to 0$$

Since every term and kernel is a free module, then it remains exact as G-modules after tensoring with M

$$0 \to M \to \mathbb{Z}[G] \otimes_{\mathbb{Z}} M \to \mathbb{Z}[G] \otimes M \to M \to 0$$

Since $\mathbb{Z}[G] \otimes M$ is just the induced module $\operatorname{Ind}^{G}(M)$, $H_{T}^{r}(G, \mathbb{Z}[G] \otimes M) = 0$. Thus by splitting the sequence into two short exact sequences and analyzing their induced long exact sequences we have

$$H^r_T(G,M) \xrightarrow{\sim} H^{r+2}(G,M)$$

Definition 2.3.8. Let G be a finite cyclic group. If $H^r(G, M)$ are finite, defined the Herbrand quotient of M to be

$$h(M) = \frac{|H_T^0(G, M)|}{|H_T^1(G, M)|}$$

Lemma 2.3.9. Let $0 \to A_0 \to A_1 \to \cdots \to 0$ be a exact sequence of finite group, then

$$\frac{|A_0||A_2|\cdots}{|A_1||A_3|\cdots} = 1$$

Proof. Break it into short exact sequences.

Proposition 2.3.10. Let $0 \to M' \to M \to M'' \to 0$ be an exact sequence of *G*-modules. If any two of h(M'), h(M), h(M'') are defined, then so is the third. Moreover,

$$h(M) = h(M')h(M'')$$

Proof. We can construct a long exact sequence as

$$0 \to K \to H^0_T(M') \to H^0_T(M) \to H^0_T(M'') \to H^1_T(M') \to H^1_T(M) \to H^1_T(M'') \to K' \to 0$$

where $K = \operatorname{Coker}(H_T^{-1}(M) \to H_T^{-1}(M''))$ and $K' = \operatorname{Coker}(H_T^1(M) \to H_T^1(M'')) \cong K$. Then the result follows from the lemma above.

Proposition 2.3.11. If M is a G-module with finite elements, then h(M) = 1.

Proof. There are two exact sequences

$$0 \to H_T^{-1}(M) \to M_G \xrightarrow{\operatorname{Nm}_G} M^G \to H_T^0(M) \to 0$$
$$0 \to M^G \to M \xrightarrow{g-1} M \to M_G \to 0$$

where g is any generator of G. Then it can be checked that H_T^{-1} and H_T^0 have the same order.

(C) F.P. (1800010614@pku.edu.cn)

2023.2

Corollary 2.3.12. Let $\alpha : M \to N$ be a homomorphism of *G*-modules with finite kernel and cokernel. If either h(M) or h(N) is finite, then so is the other, and they are equal.

Now we can introduce the Tate's theorem

Theorem 2.3.13. Let G be a finite group, and let M be a G-module. If

$$H_T^1(H, M) = 0 = H_T^2(H, M)$$

for all subgroups H of G, then $H^r_T(G, M) = 0$ for all $r \in \mathbb{Z}$.

Proof. If G is cyclic, then it is obvious.

If G is solvable, we shall prove this theorem by induction on the order of G.

Since G is solvable, it contains a normal subgroup H such that G/H is cyclic. By the inductive hypothesis, $H^r(H,G) = 0$ for all r. By 2.1.23 we have exact sequence for every $r \ge 1$

$$0 \to H^r(G/H, M^H) \to H^r(G, M) \to H^r(H, M)$$

and thus $H^r(G, M) \cong H^r(G/H, M^H) = 0$ for all $r \ge 1$.

Next we show that $H_T^0(G, M) = 0$. Let $x \in M^G$. Since $H_T^0(G/H, M^H) = 0$, then every element in M^H is in the image of $\operatorname{Nm}_{G/H}M^H$. In particular, $x = \operatorname{Nm}_{G/H}y$ for some $y \in M^H$. By the inductive hypothesis, $H_T^0(H, M) = 0$, there exists $z \in M$ such that $\operatorname{Nm}_H z = y$. Hence $\operatorname{Nm}_G(z) = x$. This implies that $x \in \operatorname{Nm}_G(M)$. Therefore, $H_T^0(G, M) = 0$.

Recall the exact sequence

$$0 \to I_G \to \mathbb{Z}[G] \to \mathbb{Z} \to 0$$

By tensoring M we have a new exact sequence

$$0 \to M' \to \operatorname{Ind}^G(M) \to M \to 0$$

Since the middle term is induced, $H_T^r(H, M) \cong H_T^{r+1}(H, M')$ for all r and all subgroups $H \subseteq G$. In particular, M' satisfies the assumption. By the inductive hypothesis and what we proved above, $H_T^r(G, M) = 0$ $(r \ge -1)$. Repeat these operations, we obtain that $H_T^r(G, M) = 0$ for all r.

For the general case, G_p is solvable for any prime p. Therefore, the result holds true for G.

Theorem 2.3.14 (Tate). Let G be a finite group and let C be a G-module. Suppose that for all subgroups H of G

- (a) $H^1(H, C) = 0$, and
- (b) $H^2(H, C)$ is a cyclic group of order equal to (H:1)

Then, for all r, there is an isomorphism

$$H^r_T(G,\mathbb{Z}) \to H^{r+2}_T(G,C)$$

depending only on the choice of a generator of $H^2(G, C)$.

Proof. Choose a generator γ in $H^2(G, C)$. Since $\operatorname{Cor} \circ \operatorname{Res} = |G:H|$, $\operatorname{Res}(\gamma)$ generates $H^2(H, C)$.

Let φ be a cocycle representing the class γ . Let $C(\varphi)$ denote the free Abelian group $\bigoplus_{\sigma \in G-1} Cx_{\sigma} + C$, where x_{σ} are free symbols for $\sigma \neq 1$, and we define $x_1 = \varphi(1, 1) \in C$.

Now we extend the action of G on C to $C(\varphi)$. Define

$$\sigma x_{\tau} = x_{\sigma\tau} - x_{\sigma} + \varphi(\sigma, \tau)$$

This action is well-defined.

Recall that

$$B^{2}(G, C(\varphi)) = \{\psi: G^{2} \to C(\varphi) | \psi(\sigma_{1}, \sigma_{2}) = \sigma_{1}\phi(\sigma_{2}) - \phi(\sigma_{1}\sigma_{2}) + \phi(\sigma_{1}) \text{ for some } \phi: G \to C(\varphi) \}$$

If we define ϕ as $\phi(\sigma) = x_{\sigma}$, then $\varphi: G^2 \to C \to C(\varphi)$ can be expressed as

$$\sigma\phi(\sigma_2) - \phi(\sigma_1\sigma_2) + \phi(\sigma_1)$$

Thus, γ vanishes under the mapping

$$H^2(G,C) \to H^2(G,C(\varphi))$$

We shall show that $H^1(H, C(\varphi)) = H^2(H, C(\varphi)) = 0$. Recall that we have an exact sequence

 $0 \to I_G \to \mathbb{Z}[G] \to \mathbb{Z} \to 0$

Since $\mathbb{Z}[G]$ is induced, we can obtain that

$$H^r_T(H, \mathbb{Z}[G]) = 0$$

for all r. Thus

$$H^{1}(H, I_{G}) \cong H^{0}_{T}(H, \mathbb{Z}) \cong \mathbb{Z}/|H: 1|\mathbb{Z}$$
$$H^{2}(H, I_{G}) \cong H^{1}(H, \mathbb{Z}) = 0$$

Define $\alpha: C(\varphi) \to \mathbb{Z}[G]$ via

$$\alpha(c) = 0, \ \forall c \in C$$
$$\alpha(x_{\sigma}) = \sigma - 1, \ \forall \sigma \in G \setminus \{1\}$$

Clearly,

$$0 \to C \to C(\varphi) \xrightarrow{\alpha} \mathbb{Z} \to 0$$

is an exact sequence of G-modules. Since $H^1(H, C) = 0$, we have the following long exact sequence

$$0 \to H^1(H, C(\varphi)) \to H^1(H, I_G) \to H^2(H, C) \xrightarrow{\operatorname{Res}(\gamma) \mapsto 0} H^2(H, C(\varphi)) \to 0$$

Considering that $\operatorname{Res}(\gamma)$ generates $H^2(H, C)$, we can find that $H^2(H, C(\varphi))$ is exactly zero.

Finally, by 2.3.13, all $H_T^r(H, C(\varphi))$ are zero. Thus

$$H_T^r(G,\mathbb{Z}) \cong H_T^{r+1}(G,I_G) \cong H_T^{r+2}(G,C)$$

© F.P. (1800010614@pku.edu.cn)

Remark 2.3.15. The map $H^r_T(G,\mathbb{Z}) \to H^{r+2}_T(G,C)$ is cup-product with the chosen element γ .

Definition 2.3.16. For a profinite group G and a discrete G-module M, let $C_c^r(G, M)$ be the set of continuous maps $G^r \to M$ and define d^r as before. We obtain some new cohomology groups $H^r(G, M)$. If H runs through all the open normal subgroups of G, we have

$$H^{r}(G, M) = \lim H^{r}(G/H, M^{H})$$

If $M = \lim \to M_i$, we have

$$H^{r}(G,M) = \lim H^{r}(G,M_{i})$$

3 Local Class Field Theory: Cohomology

3.1 The Cohomology of Unramified Extensions

Proposition 3.1.1. If L/K is a finite unramified extension of local field K, then the norm map $\operatorname{Nm}_{L/K} : U_L \to U_K$ is surjective.

Proof. Let $U_L^{(m)} = 1 + \mathfrak{m}_L^m = \{1 + a\pi^m | a \in \mathcal{O}_L\}$, where π is a prime element. Then the maps

$$u \mapsto u \pmod{\mathfrak{m}_L} : U_L \to l^*$$

$$1 + a\pi^m \mapsto a \pmod{\mathfrak{m}_L} : U_L^{(m)} \to l$$

induce the isomorphisms

$$U_L/U_L^{(1)} \xrightarrow{\sim} l^*$$
$$U_L^{(m)}/U_L^{(m+1)} \xrightarrow{\sim} l$$

By 2.1.15 we have $H^1(G, l^*) = 0$, and by 2.3.11 $h(l^*) = 1$. Hence $H^0_T(G, l^*) = H^1_T(G, l^*) = 0$, then $H^r_T(G, l^*) = 0$ holds for all $r \in \mathbb{Z}$. In particular, $0 = (l^*)^G / \operatorname{Nm}_G(l^*) = k^* / \operatorname{Nm}_G(l^*)$. Therefore the norm map $l^* \to k^*$ is surjective.

By 2.1.17 we have $H_T^r(G, l) = 0$ for all $r \in \mathbb{Z}$. In particular, the trace map $l \to k$ is surjective. Now we go back to the norm map $\operatorname{Nm}_{L/K} : U_L \to U_K$. There are two commutative diagram

For any $u \in U_K$, suppose that v is the image of u in K^* . Note that the map $U_L \to l^* \to k^*$ is surjective, then there exists an element $w \in U_L$ such that w is the preimage of v in k^* . Using the commutation, it means $\operatorname{Nm}_{L/K}(w)$ and u have the same image in k^* . Hence $u/\operatorname{Nm}_{L/K}(w) \in U_K^{(1)}$. Proceeding these steps in the right diagram, we obtain a series of elements w, w_1, \cdots such that $w_i \in U_L^{(i)}$ and $u/\operatorname{Nm}(ww_1, \cdots, w_n) \in U_K^{(n+1)}$. Then there exists an element v such that $u/\operatorname{Nm}(v) \in \cap U_K^{(i)} = \{1\}$, i.e., u is in the image of $\operatorname{Nm}_{L/K} : U_L \to U_K$.

Proposition 3.1.2. Let K be a local field. If L/K is a finite unramified extension with Galois group G, then

$$H_T^r(G, U_L) = 0$$
, for all r

Proof. The above proposition implies that $H^0_T(G, U_L) = 0$. It remains to show that $H^1_T(G, U_L) = 0$.

Consider the exact sequence

$$0 \to U_L \to L^* \to \mathbb{Z} \to 0$$

the induced long exact sequence is

$$0 \to U_K \to K^* \to \mathbb{Z} \to H^1(G, U_L) \to 0$$

Hence $H^1(G, U_L) = 0$.

Corollary 3.1.3. If L/K is an infinite unramified extension with Galois group G, then $H^r(G, U_L) = 0$ for all r > 0.

Definition 3.1.4. Now we have $H^r(G, U_L) = 0$ for all unramified extension of K. Then the exact sequence

$$0 \to U_L \to L^* \to \mathbb{Z} \to 0$$

gives that

$$H^2(G, L^*) \xrightarrow{\sim} H^2(G, \mathbb{Z})$$

Recall that $H^1(G, \mathbb{Q}/\mathbb{Z}) \cong H^2(G, \mathbb{Z})$, then there is a natural map, called the invariant map, defined by

$$\operatorname{Inv}_{L/K} : H^2(G, L^*) \cong H^1(G, \mathbb{Q}/\mathbb{Z}) = \operatorname{Hom}_{continuous}(G, \mathbb{Q}/\mathbb{Z}) \xrightarrow{f \mapsto f(\operatorname{Frob}_{L/K})} \mathbb{Q}/\mathbb{Z}$$

Theorem 3.1.5. There is an isomorphism

$$\operatorname{Inv}_{K^{\mathrm{un}}/K} : H^2(\operatorname{Gal}(K^{\mathrm{un}}/K), (K^{\mathrm{un}})^*) \to \mathbb{Q}/\mathbb{Z}$$

for every $L \subseteq K$ of finite degree over k,

$$\operatorname{Inv}_{L/K}: H^2(\operatorname{Gal}(L/K), L^*) \xrightarrow{\sim} \frac{1}{|L:K|} \mathbb{Z}/\mathbb{Z}$$

Proposition 3.1.6. Let L be a finite extension of K of degree n, and let K^{un} and L^{un} be the largest unramified extensions of K and L. Then the following diagram commutes:

$$\begin{array}{c} H^{2}(\operatorname{Gal}(K^{\mathrm{un}}/K), (K^{\mathrm{un}})^{*}) \xrightarrow{\operatorname{Res}} H^{2}(\operatorname{Gal}(L^{\mathrm{un}}/L), (L^{\mathrm{un}})^{*}) \\ \downarrow \\ \mathbb{Q}/\mathbb{Z} \xrightarrow{\cdot n} \mathbb{Q}/\mathbb{Z} \end{array}$$

Definition 3.1.7. Let L/K be a finite unramified extension. The local fundamental element is the element of $H^2(G, L^*)$ such that $u_{L/K} = \operatorname{Inv}_{L/K}^{-1}(\frac{1}{|L:K|})$. By Tate theorem, $u_{L/K}$ defines an isomorphism

$$H^r_T(G,\mathbb{Z}) \to H^{r+2}_T(G,L^*)$$

Theorem 3.1.8 (Unramified case). Let r = -2, the isomorphism above turns to

$$G \xleftarrow{\sim} K^* / \mathrm{Nm}L^*$$

it is exactly the map $\phi_{L/K}$ respectively in the local reciprocity law.

3.2 The Cohomology of Ramified Extensions

Lemma 3.2.1. If L/K is a Galois extension with |L : K| = n, then $H^2(G_{L/K}, L^*)$ contains a subgroup canonically isomorphic to $\frac{1}{n}\mathbb{Z}/\mathbb{Z}$.

Proof. 2.1.23 and Hilbert theorem 90 tell us that there is an exact sequence

$$0 \to H^2(G_{L/K}, L^*) \to H^2(G_{K^{\rm al}/K}, (K^{\rm al})^*) \to H^2(G_{K^{\rm al}/L}, (K^{\rm al})^*)$$

Consider the diagram

By 5-lemma the first vertical map is injective.

Next we prove that $H^2(G_{L/K}, L^*)$ has order n.

Lemma 3.2.2. Let L be a finite Galois extension of K with Galois group G. Then there exists an open subgroup V of \mathcal{O}_L , stable under G, such that $H^r(G, V) = 0$ for all r > 0.

Proof. Let $\{x_{\tau}\}$ be a normal basis for L over K. Also, we require that they are in \mathcal{O}_L . Take $V = \sum \mathcal{O}_K x_{\tau}$. This is a stable subgroup under the action of G. Note that it contains π^m for some m, then it contains $\pi^m \mathcal{O}_L$. Thus V is open since V is the union of cosets of $\pi^m \mathcal{O}_L$. Finally, as G-module, $V \cong \mathcal{O}_K[G] \cong \operatorname{Ind}^G \mathcal{O}_K$. Therefore, $H^r(G, V) = 0$ for all r > 0.

Lemma 3.2.3. Let L, K, G be as in the last lemma. Then there exists an open subgroup V of \mathcal{O}_L^* stable under G such that $H^r(G, V) = 0$ for all r > 0.

Lemma 3.2.4. If L/K is a cyclic extension of degree n; then $h(\mathcal{O}_L^*) = h(L^*) = 1$.

Proof. Let V be an open subgroup of \mathcal{O}_L^* with $H^r(G, V) = 0$ for all r. Because \mathcal{O}_L^* is compact, the quotient \mathcal{O}_L^*/V is finite. Thus $h(\mathcal{O}_L^*) = 1$. Also $h(L^*) = h(\mathcal{O}_L^*)h(\mathbb{Z}) = n$.

Theorem 3.2.5. Let L be a finite Galois extension of K with |L:K| = n. Then $H^2(G_{L/K}, L^*)$ has order n.

Proof. The ramification filtration gives us that the Galois group $G_{L/K}$ is solvable. Thus we can choose K' such that $L \supseteq K' \supseteq K$. Also there is an exact sequence

$$0 \to H^2(G_{K'/K}, K'^*) \to H^2(G_{L/K}, L^*) \to H^2(G_{L/K'}, L^*)$$

Thus, by reduction on n we can conclude the result.

Theorem 3.2.6. For every local field K, there exists a canonical isomorphism

$$\operatorname{Inv}_K : H^2(G_{K^{\operatorname{al}}/K}, (K^{\operatorname{al}})^*) \to \mathbb{Q}/\mathbb{Z}$$

From the same method from 3.2.1, we can obtain an isomorphism

$$\operatorname{Inv}_K : H^2(G_{L/K}, L^*) \to \frac{1}{n}\mathbb{Z}/\mathbb{Z}$$

Proof. The diagram in the proof of 3.2.1 becomes

But considering that $H^2(G_{K^{al}/K}, (K^{al})^*)$ is exactly the union of all $H^2(G_{L/K}, L^*)$ for any finite Galois extension L/K, we have that the second vertical map is indeed an isomorphism.

Definition 3.2.7. Let *L* be a finite Galois extension of *K* with Galois group *G*. We define the fundamental class $u_{L/K} \in H^2(G_{L/K}, L^*)$ to be the element mapping to $\frac{1}{|L:K|}$ under $Inv_{L/K}$.

3.3 The Local Artin Map

Theorem 3.3.1 (general case). For any finite Galois extension of local fields L/K and $r \in \mathbb{Z}$, by Tate theorem, the homomorphism

$$H^r_T(\operatorname{Gal}(L/K), \mathbb{Z}) \to H^{r+2}_T(\operatorname{Gal}(L/K), L^*)$$

is an isomorphism. When r = -2, it turns to be

$$G^{\mathrm{ab}} \cong K^* / \mathrm{Nm}_{L/K}(L^*)$$

We call its inverse map the local Artin map, denoted by $\phi_{L/K}$.

Proposition 3.3.2. The maps $\phi_{L/K}$ induce the map $\phi_K : K^* \to G = \text{Gal}(K^{\text{al}}/K)$. This map satisfies the conditions of the local reciprocity law.

Theorem 3.3.3 (Norm Limitation Theorem). Suppose L/K is a finite separable extension of non-archimedean local fields and E/K is the maximal abelian sub-extension in L. Then,

$$\operatorname{Nm}_{L/K}(L^*) = \operatorname{Nm}_{E/K}(E^*)$$

This theorem shows that there is no hope of classifying non-Abelian extensions of a local field in terms of the norm groups.

Proof. If L/K is Galois, then $\operatorname{Gal}(E/K) = \operatorname{Gal}(L/K)^{\operatorname{ab}}$. From the local Artin map we can conclude a canonical isomorphism

$$K^*/\operatorname{Nm}_{L/K}(L^*) \cong K^*/\operatorname{Nm}_{L/K}(E^*)$$

However, we know that $Nm(L^*)$ is a subgroup of $Nm(E^*)$, thus, they are equal.

In the general case, we assume that L' is the minimal Galois extension of K containing L. Let $G = \operatorname{Gal}(L'/K)$ and $H = \operatorname{Gal}(L'/L)$. The subgroup of G fixing E is $G' \cdot H$, where G' is the derived group of G. Let $a \in \operatorname{Nm}(E^*)$, we have to show that $a \in \operatorname{Nm}(L^*)$. Consider the diagram

There exists $b \in L^*$ such that $\phi_{L'/K}(a) = \phi_{L'/K}(\operatorname{Nm}(b))$, and hence $a/\operatorname{Nm}(b) = \operatorname{Nm}(c)$ for some $c \in (L^*)'$. Thus, $a \in \operatorname{Nm}_{L/K}(L^*)$.

3.4 Hilbert Symbol

We will prove the following proposition

Proposition 3.4.1. Let K be a local field containing a primitive nth root of 1. Any element of K^* that is a norm from every cyclic extension of K of degree dividing n is an nth power.

Example 3. We introduce a special case that $K = \mathbb{Q}_p$ and n = 2. For $a, b \in \mathbb{Q}_p^*$, define

$$(a,b)_p = \begin{cases} 1 & \text{if } z^2 = ax^2 + by^2 \text{ has a nontrivial solution in } \mathbb{Q}_p \\ -1 & \text{otherwise} \end{cases}$$

Clearly, $(a, b)_p$ depends only a, b modulo squares, and so there is a pairing

$$a, b \mapsto (a, b)_p : \mathbb{Q}_p^* / (\mathbb{Q}_p^*)^2 \times \mathbb{Q}_p^* / (\mathbb{Q}_p^*)^2 \to \{\pm 1\}$$

Also, one can verify that this pairing is bi-multiplicative, symmetric and non-degenerate.

Let a be a non-square in \mathbb{Q}_p^* . Thus,

$$b$$
 is a norm from $\mathbb{Q}_p[\sqrt{a}] \iff b = (z - \sqrt{a}x)(z + \sqrt{a}x)$ has a solution in \mathbb{Q}_p
 $\iff (a, b)_p = 1$

(Note: at this case, any y satisfying the equation $ax^2 + by^2 = z^2$ cannot be zero.

Thus, if b is in $\operatorname{Nm}(\mathbb{Q}_p[\sqrt{a}])$ for any a, then b is in $(\mathbb{Q}_p^*)^2$.

Definition 3.4.2. Now we define the Hilbert symbol in the general case.

From the sequence

$$0 \to \mu_n \to (K^{\mathrm{al}})^* \xrightarrow{x \mapsto x^n} (K^{\mathrm{al}})^n \to 0$$

and the Hilbert 90 theorem, we can obtain that

$$H^1(G,\mu_n) \cong K^*/(K^*)^n, \quad H^2(G,\mu_n) \cong H^2(G,(K^{\rm al})^*)_n$$

where \square_n represents the elements in \square killed by n.

Now we consider the cup-product

$$H^1(G, \mathbb{Z}/n\mathbb{Z}) \times H^1(G, \mu_n) \to H^2(G, \mu_n)$$

where I assume that G acts on $\mathbb{Z}/n\mathbb{Z}$ trivially. Thus, the cup-product becomes

$$\operatorname{Hom}(G, \mathbb{Z}/n\mathbb{Z}) \times K^*/(K^*)^n \to H^2(G, (K^{\operatorname{al}})^*)_n$$

For $\chi \in \text{Hom}(G, \mathbb{Z}/n\mathbb{Z})$ and $b \in K^*/(K^*)^n$, we write (χ, b) for the image of the pair.

Let χ be an element with order n, let L_{χ} be the subfield fixed by $\text{Ker}(\chi)$. Thus, it represents an extension with Galois group $G/\text{Ker}(\chi) \cong \mathbb{Z}/n\mathbb{Z}$, that is, it is a cyclic extension of K.

Let $b \in K^*$, the local Artin map tells us that there is an isomorphism

$$K^*/\mathrm{Nm}L^*_{\chi} \xrightarrow{\sim} H^2(\mathbb{Z}/n\mathbb{Z}, L^*_{\chi})$$
$$b \mapsto \delta \chi \cup b$$

The inflation map, which is injective, sends $\delta \chi \cup b$ to (χ, b) . Thus, if $(\chi, b) = 0$ then $(\chi, b)' = 0$, through the isomorphism this indeed means that $b \in \operatorname{Nm} L_{\chi}^*$.

Considering that there is an isomorphism

$$\operatorname{Inv}_K : H^2(G, (K^{\operatorname{al}})^*) \xrightarrow{\sim} \mathbb{Q}/\mathbb{Z}$$

then there is a pairing

the set of
$$(\chi, b) \to \frac{1}{n} \mathbb{Z}/\mathbb{Z}$$

We can verify that the left kernel of this pairing is zero.

Now we assume that K is a local field containing the nth root of 1. Thus, $\mu_n \cong \mathbb{Z}/n\mathbb{Z}$ as G-modules. Then we have a cup-product pairing

$$H^1(G,\mu_n) \times H^1(G,\mu_n) \to H^2(G,\mu_n \otimes \mu_n)$$

which is exactly

$$K^*/(K^*)^n \times K^*/(K^*)^n \to \mu_n$$

This pairing is called the Hilbert symbol.

Theorem 3.4.3. This pairing has the following properties

- 1. It is bi-multiplicative.
- 2. It is skew-symmetric, i.e., $(b, a) = (a, b)^{-1}$.
- 3. It is non-degenerate.
- 4. (a, b) = 1 if and only if b is a norm from $K[\sqrt[n]{a}]$.

3.5 The existence theorem

Theorem 3.5.1. A subgroup N of K^* is a norm group if there is a finite Abelian extension L/K such that $\operatorname{Nm}_{L/K}(L^*) = N$. Then, every norm open subgroup of finite index in K^* is a norm group.

Proof. Step 1. For all finite extensions L/K, the norm map $L^* \to K^*$ has closed image and compact kernel.

By 1.1.9, the image is open and closed. For the kernel, it is closed in \mathcal{O}_L^* , thus is compact.

Step 2. Let $D_K = \bigcap_{L/K} \text{ finite } \operatorname{Nm}_{L/K}(L^*)$. For any finite extension K'/K, $\operatorname{Nm}_{K'/K}D_{K'} = D_K$.

Let $a \in D_K$, and consider the sets

$$\operatorname{Nm}_{L/K'}(L^*) \cap \operatorname{Nm}_{K'/K}^{-1}(a)$$

for L/K' finite. These sets are compact and non-empty, and the intersection of any two of them contains the third one. Thus, the intersection of all of them is non-empty. That means, $Nm_{K/K'}$ is surjective over D_K .

Step 3. The group D_K is divisible.

Let n > 1 be an integer. We want to show that $D_K^n = D_K$. Let $a \in D_K$. For each finite extension L of K containing a primitive nth root of 1, consider the set

$$E(L) = \{ b \in K^* | b^n = a, b \in Nm_{L/K}(L^*) \}$$

From step 2 we know that $a = \operatorname{Nm}_{L/K} a'$ for some $a' \in D_L$. From the Hilbert symbol theorem we know that a' is indeed a *n*th power, said $a' = c^n$ for $c \in L^*$. Thus, $a = \operatorname{Nm}(c)^n$. As a result, E(L) is non-empty. Moreover, it is easy to see that

$$E(L) \cap E(L') \supseteq E(L \cdot L')$$

Also, note that E(L) is a finite set. Thus, the intersection of all E(L) is non-empty.

Step 4. Every subgroup I of finite index containing \mathcal{O}_K^* is a norm subgroup.

The group I is just like $\operatorname{ord}_{K}^{-1}(n\mathbb{Z})$. Let K_{n} be the unramified extension of K of degree n. Then $\operatorname{Nm}_{K_{n}/K}(K_{n}^{*})$ is a subgroup of K^{*} containing U_{K} with image $n\mathbb{Z}$. Thus, it is exactly I.

Step 5. The original theorem.

Let \mathcal{N} be the set of all norm groups in K^* , so that $D_K = \bigcap_{N \in \mathcal{N}} N$. Let I be a subgroup of K^* of finite index. Because D_K is divisible, $I \supseteq D_K$. Thus, $I \supseteq \bigcap_{N \in \mathcal{N}} (N \cap \mathcal{O}_K^*)$. Because these sets are compact, and any two of them contains the third one, $I \supseteq N \cap \mathcal{O}_K^*$ for a certain N.

Now the group $\mathcal{O}_K^* \cdot (N \cap I)$ is a subgroup of finite index in K^* containing \mathcal{O}_K^* , which is a norm group. Now $N \cap (U_K \cdot (N \cap I))$, is an intersection of two norm groups, and thus contains a norm group. We can check easily that I contains this intersection, then it contains a norm group. Then I is a norm group.

4 Brauer Groups

4.1 Simple algebras; semisimple modules

Definition 4.1.1. A k-algebra is a ring A containing k in its center and **finite dimensional** as a k-vector space. A k-subalgebra of a k-algebra is a subring containing k.

A homomorphism $\varphi : A \to B$ of k-algebras is a homomorphism of rings with the property that $\varphi(a) = a$ for all $a \in k$.

Now we write A for a k-algebra.

Definition 4.1.2. By an A-module, we mean a **finitely generated** left A-module V.

An A-module is simple if it is nonzero and contains contains no proper A-submodule except 0, and it is semi-simple if it is isomorphic to a direct sum of simple A-modules. It is in-decomposable if it can not be written as a direct sum of two non-zero A-modules.

Every semi-simple A-module V can be written as a direct sum

$$V \cong m_1 S_1 \oplus \dots \oplus m_r S_r$$

with each S_i simple and no two isomorphic. An A-module is said to be isotypic if r < 2.

Proposition 4.1.3. Let V be a semi-simple A-module. A submodule of V is stable under all endomorphisms of V if and only if it is a sum of isotypic components of V.

Definition 4.1.4. A k-algebra A is said to be semi-simple if every A-module is semi-simple.

Proposition 4.1.5. Let A be a semi-simple k-algebra. The isotypic components of the A-module ${}_{A}A$ are the minimal two-sided ideas of A.

Definition 4.1.6. A k-algebra A is said to be simple if it contains no proper two-sided ideals other than 0.

A k-algebra A is said to be a division algebra if every nonzero element a of A has an inverse. Note that a division algebra is almost a field except the commutativity. It also have the similar properties with fields, like a division algebra has no nonzero proper ideals, left, right, or two-sided, and so is simple.

Much of linear algebra does not require that the field be commutative. For example, we can define the dimension for a finite generated module V over a division algebra D.

Example 4. For $(a, b) \in k^*$, let H(a, b) be the k-algebra with basis 1, i, j, ij (as a k-vector space) and with the multiplication determined by

$$i^2 = a, \quad j^2 = b, \quad ij = -ji$$

Then H(a, b) is a k-algebra, called a quaternion algebra over k.

Definition 4.1.7. Let A be a k-subalgebra of a k-algebra B. The centralizer of A in B is

$$C_B(A) = \{ b \in B | ba = ab \text{ for all } a \in A \}$$

Theorem 4.1.8 (Double centralizer theorem). Let A be a k-algebra, and let V be a faithful semi-simple A-module. Then C(C(A)) = A (centralizers taken in $End_k(V)$).

Proof. Let $D = C_{\operatorname{End}_k(V)}(A)$, and $B = C_{\operatorname{End}_k(V)}(D)$. Clearly, every $a \in A$ commutes with D. Thus, $A \subseteq B$. The following lemma gives us that $A \supseteq B$.

Lemma 4.1.9. For any $v_1, \dots, v_n \in V$ and $b \in B$, there exists an $a \in A$ such that

 $av_1 = bv_1, \quad av_2 = bv_2, \cdots, av_n = bv_n$

Lemma 4.1.10 (Schur's lemma). The endomorphism algebra of a simple A-module is a division algebra.

Proof. The linear map between S, which is a simple A-module, is either 0 or a bijection.

Theorem 4.1.11. Every simple k-algebra A is isomorphic to $M_n(D)$ for some n and some division k-algebra D.

Proof. Choose a simple A-module S. Since the kernel of $A \to \operatorname{End}_k(S)$ will be a two-sided ideal of A, the action of A on S is indeed faithfully.

Let D be the centralizer of A in the k-algebra $\operatorname{End}_k(S)$ of k-linear maps $S \to S$. We know that $A = C_{\operatorname{End}_k(S)}(D)$. That is, $D = \operatorname{End}_A(S)$. Thus, Schur's lemma tells us that D is a division algebra. Therefore, S is a free D-module. Thus, $A \cong \operatorname{End}_D(S) \cong M_n(D^{\operatorname{op}})$.

Corollary 4.1.12. Simple k-algebras are semi-simple.

Theorem 4.1.13. Let A be a semi-simple k-algebra. The following conditions on A are equivalent:

- 1. A is simple
- 2. the A-module ${}_AA$ is isotypic
- 3. any two simple A-modules are isomorphic.

Corollary 4.1.14. Let A be a simple A-modules. Any two minimal left ideals of A are isomorphic as left A-modules, and A is a direct sum of its minimal left ideals.

Corollary 4.1.15. Let A be a simple A, and let S be a simple A-module. Every A-module is isomorphic to a direct sum of copies of S. Any two A-modules having the same dimension over k are isomorphic.

4.2 Definition of the Brauer Group

Proposition 4.2.1. Let A, A' be k-algebras, with sub-algebras B and B'. Let C(B) and C(B') be the centralizers of B and B' in A and A' separately. Then the centralizer of $B \otimes_k B'$ in $A \otimes_k A'$ is $C(B) \otimes_k C(B')$.

Corollary 4.2.2. The centre of a simple k-algebra is a field.

Proof. We have

$$Z(M_n(D)) = Z(k \otimes_k Z(D)) \cong Z(k) \otimes_k Z(D) = Z(D)$$

Obviously, the centre of a division algebra is a field.

Definition 4.2.3. A k-algebra is said to be centre if its centre is k.

Definition 4.2.4. Let V be a k-vector space, possibly infinite dimensional. Let $(e_i)_{i \in I}$ be a basis for V. Any $v \in V$ can be written uniquely $v \sum a_i e_i$, and we write

$$J(v) = \{i \in I | a_i \neq 0\}$$

it is a finite subset of I, which is empty if and only if v = 0.

Let W be a subspace of V. A nonzero element $w \in W$ is called primordial if at least one $a_i = 1$ and $\#J(W) = \min\{J(w') | w' \in W\}.$

Proposition 4.2.5. (a) Let w be a nonzero element of W such that J(w) is minimal, and let w' be a second nonzero element of W. Then $J(w') \subseteq J(w)$ if and only if w' = cw.

(b) The set of primordial elements of W spans it.

Proposition 4.2.6. The tensor product of two central simple k-algebras is again central simple.

Theorem 4.2.7 (Skolem, Noether). Let $f, g : A \to B$ be homomorphism from a k-algebra to a k-algebra B. If A is simple and B is central simple, then there exists an invertible element $b \in B$ such that $f(a) = b \cdot g(a) \cdot b^{-1}$ for all $a \in A$.

Corollary 4.2.8. Let A be a central simple algebra over k, and let B_1 and B_2 be simple k-subalgebras of A. Any isomorphism $f : B_1 \to B_2$ is induced by an inner automorphism of A, i.e., there exists an invertible $a \in A$ such that $f(b) = aba^{-1}$ for all $b \in B_1$.

Definition 4.2.9. Let A and B be central simple algebras over k. We say that A and B are similar, $A \sim B$, if $A \otimes_k M_n(k) \cong B \otimes_k M_m(k)$. Define Br(k) to be the set of similarity classes of central simple algebras over k. It is an Abelian group.

Note that $A \mapsto A \otimes_k K$ builds a homomorphism

$$\operatorname{Br}(k) \to \operatorname{Br}(K)$$

its kernel is denoted by Br(K/k). An element in Br(K/k) is said to have a splitting field K.

Proposition 4.2.10. Note that $A \cong M_n(D)$ for some central division algebra D. As a result, each similarity is represented by a central division algebra.

Example 5. If k is algebraically closed, then Br(k) = 0.

Proposition 4.2.11. Let A be a central simple algebra over k, and let K be a field extension containing k. Then $A \otimes_k K$ is a central simple algebra over K.

Corollary 4.2.12. For a central simple algebra A over k, [A:k] is a square.

Proposition 4.2.13. For any field k, $Br(k) = \bigcup Br(K/k)$, where K runs over the finite extensions of k contained in some fixed algebraic closure.

4.3 The Brauer group and cohomology

We will prove that there is an isomorphism

$$H^2(\operatorname{Gal}(L/K), L^*) \cong \operatorname{Br}(L/K)$$

for any Galois extension L/K.

Theorem 4.3.1 (Another version of double centralizer theorem). Let *B* be a simple *k*-subalgebra of a central simple *k*-algebra *A*. Then the centralizer C = C(B) of *B* in *A* is simple, and *B* is the centralizer of *C*. Moreover,

$$[B:k][C:k] = [A:k]$$

Corollary 4.3.2. If in the statement of the theorem, B has center k, then so does C. The canonical homomorphism

$$B \otimes_k C \to A$$

is an isomorphism.

Corollary 4.3.3. Let A be a central simple algebra over k, and let L be a subfield of A containing k. The following are equivalent:

- 1. L equals its centralizer in A.
- 2. $[A:k] = [L:k]^2$.
- 3. L is a maximal commutative k-subalgebra of A.

Corollary 4.3.4. The maximal subfields containing k of a central division k-algebra D are exactly those with degree $\sqrt{[D:k]}$ over k.

Corollary 4.3.5. Let A be a central simple algebra over k. A field L of finite degree over k spits A if and only if there exists an algebra B similar to A containing L and such that

$$[B:k] = [L:k]^2$$

In particular, every subfield L of A of degree $[A:k]^{1/2}$ over k splits A.

Corollary 4.3.6. Let D be a central division algebra of degree n^2 over k, and let L be a field of degree n over k. Then L splits D if and only if L can be embedded in D.

Proposition 4.3.7. Every central division algebra over k contains a maximal subfield separable over k.

Corollary 4.3.8. The Brauer group $Br(k) = \bigcup Br(L/k)$, where L/K runs over the finite extensions of k contained in a fixed separable closure of k.

Define $\mathcal{A}(L/K)$ to be the class if central simple algebras A containing L and of degree $[A : k] = [L : k]^2$.

Fix an $A \in \mathcal{A}(L/K)$. Recall that there exists an element $e_{\sigma} \in A$ such that

$$\sigma a = e_{\sigma} a e_{\sigma}^{-1}, \ \forall a \in L$$

Through $\sigma \tau a = \sigma(\tau a)$ we can conclude that

$$e_{\sigma\tau}ae_{\sigma\tau}^{-1} = e_{\sigma}e_{\tau}ae_{\tau}^{-1}e_{\sigma}^{-1}$$

Thus, $e_{\sigma}e_{\tau} = \varphi(\sigma,\tau)e_{\sigma\tau}$ for some $\varphi \in L^*$.

One can verify that this defines a 2-cocycle. Thus, we have a well-defined map

$$A \mapsto \gamma(A) : \mathcal{A}(L/K) \to H^2(\operatorname{Gal}(L/K), L^*)$$

Theorem 4.3.9. The map γ is surjective, and its fibres are the isomorphism classes.

Theorem 4.3.10. For every finite Galois extension L/K, there is an isomorphism of Abelian groups

$$H^2(\operatorname{Gal}(L/K), L^*) \to \operatorname{Br}(L/K)$$

Corollary 4.3.11. For every separable algebraic closure K^{al} of K, there is a canonical isomorphism $\text{Br}(K) \to H^2(\text{Gal}_{K^{\text{al}}/K}, (K^{\text{al}})^*)$.

4.4 The Brauer groups of special fields

Theorem 4.4.1. For finite fields K, $\operatorname{Br}(k) \cong H^2(\operatorname{Gal}_{K^{\operatorname{al}}/K}, (K^{\operatorname{al}})^*) = 0$.

Theorem 4.4.2. Finite division algebras are commutative.

Theorem 4.4.3. If K is a local field, every element of Br(K) is split by an unramified extension. Thus $Br(K) = Br(K^{un}/K)$.

5 Global Class Field Theory: Statements of the Main Theorems

5.1 Ray Class Groups

Let K be a number field and I the group of all fractional ideals of K. For any $a \in K$, let a_v or a_p be the image of a in K_v or K_p .

Lemma 5.1.1. For any finite set S of primes of K, let I^S be the subgroup of I which is generated by the prime ideals not in S. Let

$$K^S = \{a \in K^* | (a) \in I^S\} = \{a \in K^* | \operatorname{ord}_{\mathfrak{p}}(a) = 0 \text{ for all } \mathfrak{p} \in S\}$$

Let $i: K^* \to I$ be the map sending a to the fractional ideal $a\mathcal{O}_K^*$.

Then there is an exact sequence

$$0 \to \mathcal{O}_K^* \to K^S \xrightarrow{i} I^S \to C = I/i(K^*) \to 0$$

Proof. To show $I^S \to C$ is surjective, it suffices to show that for any equivalent class in C, it can be represented by an element in I^S . We can reduce this question to the integral ideal case. For

integral ideal $\mathfrak{a} \in I^S$, we may write $\mathfrak{a} = \prod_{\mathfrak{p} \in S} \mathfrak{p}^{n_\mathfrak{p}} \mathfrak{b}$, where $\mathfrak{b} \in I^S$. Choose a $\pi_\mathfrak{p} \in \mathfrak{p}$ such that $\operatorname{ord}_\mathfrak{p}(\pi_\mathfrak{p}) = 1$, then there exists an element *a* such that

$$a \equiv \pi_{\mathfrak{p}}^{n_{\mathfrak{p}}} \pmod{\mathfrak{p}^{n_{\mathfrak{p}}+1}}$$

for all $\mathfrak{p} \in S$. Then $(a) = \prod_{\mathfrak{p} \in S} \mathfrak{p}^{n_\mathfrak{p}} \mathfrak{b}'$, where $\mathfrak{b}' \in I^S$. Now $a^{-1}\mathfrak{a} \in I^S$. Since $(a) \mapsto 0$, $a^{-1}\mathfrak{a}$ is sent to \mathfrak{a} .

Definition 5.1.2. A modulus for K is a function

$$m: \{ \text{primes of } K \} \to \mathbb{Z}$$

such that

- (1) $m(\mathfrak{p}) \geq 0$ for all prime \mathfrak{p} and $m(\mathfrak{p}) = 0$ for all but finite prime ideals \mathfrak{p} .
- (2) if \mathfrak{p} is real, then $m(\mathfrak{p}) = 0$ or 1.
- (3) if \mathfrak{p} is complex, then $m(\mathfrak{p}) = 0$.

Let $\mathfrak{m} = \prod_{\mathfrak{p}} \mathfrak{p}^{m(\mathfrak{p})} = \mathfrak{m}_{\infty} \mathfrak{m}_0$ formally be the ideal corresponding to m, where \mathfrak{m}_{∞} is the product of real primes. Let $S(\mathfrak{m})$ be the set of all primes dividing \mathfrak{m} .

Definition 5.1.3. For a modulus m, define $K_{\mathfrak{m},1}$ to be the set of $a \in K^*$ such that

 $\begin{cases} \operatorname{ord}_{\mathfrak{p}}(a-1) \geq m(\mathfrak{p}) & \text{all finite } \mathfrak{p} \text{ dividing } \mathfrak{m} \\ a_{\mathfrak{p}} > 0 & \text{all real } \mathfrak{p} \text{ dividing } \mathfrak{m} \end{cases}$

Note that for every $a \in K_{\mathfrak{m},1}$ and prime ideal \mathfrak{p} dividing \mathfrak{m} , $\operatorname{ord}_{\mathfrak{p}}(a) = 0$. Hence there is a natural inclusion $K_{\mathfrak{m},1} \to I^{S(m)}$ sending a to (a). The quotient $C_{\mathfrak{m}} = I^{S(\mathfrak{m})}/i(K_{\mathfrak{m},1})$ is called the (ray) class group modulo \mathfrak{m} .

Lemma 5.1.4. Let S be a finite set of prime ideals of K. Then every element $\alpha \in K^S$ can be written as $\alpha = a/b$ with $a, b \in \mathcal{O}_K \cap K^S$.

Proposition 5.1.5. Every class in $C_{\mathfrak{m}}$ is represented by an integral ideal \mathfrak{a} , and two integral ideals \mathfrak{a} and \mathfrak{b} represent the same class if and only if there exist nonzero $a, b \in \mathcal{O}_K$ such that $a\mathfrak{a} = b\mathfrak{b}$ and

$$a \equiv b \equiv 1 \pmod{\mathfrak{m}_0}$$

a and b have the same sign for every real prime dividing ${\mathfrak m}$

Proof. Suppose that the class is represented by $\mathfrak{a} \in I^{S(\mathfrak{m})}$, let $\mathfrak{a} = \mathfrak{b}\mathfrak{c}^{-1}$ with \mathfrak{b} and \mathfrak{c} integral ideals in $I^{S(\mathfrak{m})}$. By Chinese remainder theorem there exists a nonzero ideal in $c \in \mathfrak{c} \cap K_{\mathfrak{m}_0,1}$, and the strong approximation theorem shows that c can be chosen to be > 0 at the real primes. Now $c\mathfrak{a}$ is integral and represents the same class with \mathfrak{a} .

Theorem 5.1.6. For every modulus \mathfrak{m} there is an exact sequence

$$0 \to \mathcal{O}_K^*/\mathcal{O}_K^* \cap K_{\mathfrak{m},1} \to K^{S(\mathfrak{m})}/K_{\mathfrak{m},1} \to C_{\mathfrak{m}} \to C \to 0$$

and canonical isomorphisms

$$K^{S(\mathfrak{m})}/K_{\mathfrak{m},1} \cong \prod_{\mathfrak{p} \text{ real and } \mathfrak{p}|\mathfrak{m}} \{\pm\} \times \prod_{\mathfrak{p} \text{ finite and } \mathfrak{p}|\mathfrak{m}} (\mathcal{O}_K/\mathfrak{p}^{m(\mathfrak{p})})^* \cong \prod_{\mathfrak{p} \text{ real and } \mathfrak{p}|\mathfrak{m}} \{\pm\} \times (\mathcal{O}_K/\mathfrak{m}_0)^*$$

Therefore $C_{\mathfrak{m}}$ is a finite group of order

$$h_{\mathfrak{m}} = h \cdot \left(\mathcal{O}_{K}^{*} : \mathcal{O}_{K}^{*} \cap K_{\mathfrak{m},1} \right)^{-1} 2^{r_{0}} \mathbb{N}(\mathfrak{m}_{0}) \prod_{\mathfrak{p} \mid \mathfrak{m}_{0}} \left(1 - \frac{1}{\mathbb{N}\mathfrak{p}} \right)$$

where r_0 is the number of real primes dividing \mathfrak{m} and h = |C| is the class number.

Proof. The exactness of the sequence follows from 5.1.1. The second statement follows from the Chinese remainder theorem.

5.2 L-series and the Density of Primes in Arithmetic Progressions

5.3 The Main Theorems in Terms of Ideals

Definition 5.3.1. Let L/K be a finite Abelian extension with the Galois group G. For every finite set S of primes of K containing all primes that ramify in L, we have a homomorphism

$$\Psi: I^S \to \operatorname{Gal}(L/K), \quad \prod \mathfrak{p}_i^{n_i} \mapsto \prod \operatorname{Frob}_{\mathfrak{p}_i}^{n_i}$$

called the global Artin map (or reciprocity map).

Proposition 5.3.2. Let *L* be an Abelian extension of *K*, and let K' be an intermediate field: $L \supseteq K' \supseteq K$. Then the following diagram commutes:

$$\begin{array}{ccc} I_{K'}^S \xrightarrow{\Psi_{L/K'}} \operatorname{Gal}(L/K') \\ \underset{K}{\operatorname{Nm}} & & & \\ I_K^S \xrightarrow{\Psi_{L/K}} \operatorname{Gal}(L/K) \end{array}$$

Corollary 5.3.3. Let K' = L, then $Nm(I_L^S) \subseteq Ker(\Psi_{L/K})$. Thus the Artin map induces a homomorphism

$$\psi_{L/K}: I_K^S / \operatorname{Nm}(I_K'^S) \to \operatorname{Gal}(L/K)$$

if L/K is a finite Abelian extension.

Definition 5.3.4. Let S be a finite set of primes of K. We say a homomorphism $\Psi : I^S \to G$ admits a modulus if there exists a modulus \mathfrak{m} with $S(\mathfrak{m}) \supseteq S$ such that $\Psi(i(K_{\mathfrak{m},1})) = 0$. Thus Ψ admits a modulus if and only if it factors through $C_{\mathfrak{m}}$ for some \mathfrak{m} with $S(\mathfrak{m}) \supseteq S$.

Theorem 5.3.5 (Reciprocity Law). Let L be a finite Abelian extension of K, and let S be the set of primes of K ramifying in L. Then the Artin map $\Psi: I^S \to \text{Gal}(L/K)$ admits a modulus \mathfrak{m} with $S(\mathfrak{m}) = S$, and it defines an isomorphism

$$I_K^{S(\mathfrak{m})}/i(K_{\mathfrak{m},1})\cdot \operatorname{Nm}(I_L^{S(\mathfrak{m})}) \to \operatorname{Gal}(L/K)$$

A modulus as in the statement of the theorem is called a defining modulus for L.

Definition 5.3.6. We call that a subgroup H of $I_K^{\mathfrak{m}} = I_K^{S(\mathfrak{m})}$ is a congruence subgroup modulo \mathfrak{m} if

$$I_K^{\mathfrak{m}} \supseteq H \supseteq i(K_{\mathfrak{m},1})$$

Theorem 5.3.7 (Existence theorem). For every congruence subgroup H modulo \mathfrak{m} , there exists a finite Abelian extension L/K unramified at the primes not dividing \mathfrak{m} such that $H = i(K_{\mathfrak{m},1}) \cdot \operatorname{Nm}_{L/K}(I_L^{\mathfrak{m}})$.

Remark 5.3.8. Given a finite Abelian extension L/K, then the reciprocity law tells us that the Artin map $\Psi: I^S \to \operatorname{Gal}(L/K)$ admits a modulus \mathfrak{m} such that

$$S(\mathfrak{m}) = S, \quad i(K_{\mathfrak{m},1}) \cdot \operatorname{Nm}(I_L^{S(\mathfrak{m})}) = \operatorname{Ker}(\Psi)$$

In other word, there is an isomorphism

$$C_{\mathfrak{m}} = I^{S(\mathfrak{m})}/H \to \operatorname{Gal}(L/K)$$

The existing theorem tells us that L is highly connected with \mathfrak{m} , thus, we often note this L, called the ray class field modulo \mathfrak{m} , as $L_{\mathfrak{m}}$. For any field $L \subseteq L_{\mathfrak{m}}$, set

$$\operatorname{Nm}(C_{L,\mathfrak{m}}) = i(K_{\mathfrak{m},1}) \cdot \operatorname{Nm}(I_L^{\mathfrak{m}})$$

The existing theorem infers that the map $L \mapsto \operatorname{Nm}(C_{L,\mathfrak{m}})$ induces a bijection from the set of Abelian extensions of K contained in $L_{\mathfrak{m}}$ and the set of subgroups of $C_{\mathfrak{m}}$.

Corollary 5.3.9. For every number field K, there is an isomorphism

$$\lim C_{\mathfrak{m}} \to \operatorname{Gal}(K^{\mathrm{ab}}/K)$$

Corollary 5.3.10. Let $H = i(K_{\mathfrak{m},1})$, then for any modulus \mathfrak{m} there is a field $L_{\mathfrak{m}}$, called the ray class field modulo \mathfrak{m} , such that there is an isomorphism

$$C_{\mathfrak{m}} \to \operatorname{Gal}(L_{\mathfrak{m}}/K)$$

Moreover, for any field $K \subseteq L \subseteq L_{\mathfrak{m}}$, define $\operatorname{Nm}(C_{L,\mathfrak{m}}) = \operatorname{Nm}(I_L^{\mathfrak{m}}) \subseteq C_{\mathfrak{m}}$. Then the correspondence $L \mapsto \operatorname{Nm}(C_{L,\mathfrak{m}})$ is a bijection between the set of Abelian extensions of K contained in $L_{\mathfrak{m}}$ and the set of subgroups of $C_{\mathfrak{m}}$. And

$$L_1 \subseteq L_2 \iff \operatorname{Nm}(C_{L_1,\mathfrak{m}}) \supseteq \operatorname{Nm}(C_{L_2,\mathfrak{m}})$$
$$\operatorname{Nm}(C_{L_1 \cdot L_2,\mathfrak{m}}) = \operatorname{Nm}(C_{L_1,\mathfrak{m}}) \cap \operatorname{Nm}(C_{L_2,\mathfrak{m}})$$
$$\operatorname{Nm}(C_{L_1 \cap L_2,\mathfrak{m}}) = \operatorname{Nm}(C_{L_1,\mathfrak{m}}) \cdot \operatorname{Nm}(C_{L_2,\mathfrak{m}})$$

Definition 5.3.11. Let L/K be an Abelian extension with Galois group G. By the reciprocity law there is a modulus \mathfrak{m} , with $S = S(\mathfrak{m}) =$ the set of primes of K ramifying in L, such that the Artin map

$$\Psi_{L/K}: I^S \to G$$

has the kernel $i(K_{\mathfrak{m},1}) \cdot \operatorname{Nm}(I_L^{S(\mathfrak{m})})$.

Recall that there is an exact sequence

$$(\mathcal{O}_K/\mathfrak{p}^{m(\mathfrak{p})})^* \hookrightarrow K^S/K_{\mathfrak{m},1} \xrightarrow{i} C_{\mathfrak{m}} \xrightarrow{\Psi_{L/K}} G$$

there must be a smallest integer $f(\mathfrak{p}) \leq m(\mathfrak{p})$ such that the map factors as

$$(\mathcal{O}_K/\mathfrak{p}^{m(\mathfrak{p})})^* \to (\mathcal{O}_K/\mathfrak{p}^{f(\mathfrak{p})})^* \to G$$

Thus the modulus $\mathfrak{f}(L/K) = \mathfrak{m}_{\infty} \prod \mathfrak{p}^{f(\mathfrak{p})}$ is then the smallest modulus such that $\Psi_{L/K}$ factors through $C_{\mathfrak{f}}$, it is called the conductor of L/K. The conductor is divisible exactly by the prime ramifying in L.

The subfields of the ray class field $L_{\mathfrak{m}}$ containing K are those with conductor $\mathfrak{f}|\mathfrak{m}$. Every Abelian extension of K is contained in $L_{\mathfrak{m}}$ for some \mathfrak{m} .

Theorem 5.3.12 (Norm Limitation Theorem). Let L be a finite extension of K, and let L' be a maximal Abelian subextension. For every defining modulus \mathfrak{m} for L'

$$i(K_{\mathfrak{m},1})\operatorname{Nm}_{L/K}(I_L^{S(\mathfrak{m})}) = i(K_{\mathfrak{m},1})\operatorname{Nm}_{L'/K}(I_{L'}^{S(\mathfrak{m})})$$

5.4 Ideles

Definition 5.4.1. Define the group of ideles to be

$$\mathbb{I} = \mathbb{I}_K = \{(a_v) \in \prod K_v^* | a_v \in \mathcal{O}_v^* \text{ for all but finitely many } v\}$$

where \mathcal{O}_v = the ring of integers in K_v .

For every finite set S of primes that includes all infinite primes, let

$$\mathbb{I}_S = \prod_{v \in S} K_v^* \times \prod_{v \notin S} \mathcal{O}_v^*$$

with the product topology. It is locally compact since the first factor is locally compact and the second factor is compact (by Tychonoff theorem). Note that

$$\mathbb{I} = \bigcup \mathbb{I}_S$$

Now we endow $\mathbb I$ a new topology, which is generated by the basis of open sets

$$\left\{\prod_{v} V_{v}: V_{v} \text{ is open in } K_{v}^{*} \text{ and } V_{v} = \mathcal{O}_{v}^{*} \text{ for all but finitely many } v\right\}$$

This topology makes every \mathbb{I}_S open and inherits the product topology. Moreover, it makes \mathbb{I} to be a topological group. The following sets form a fundamental system of neighborhood of 1: for each finite set of primes $S \supseteq S_{\infty}$ and $\epsilon > 0$, define

$$U(S, \epsilon) = \{(a_v) : |a_v - 1|_v < \epsilon, \text{ for } v \in S, |a_v|_v = 1, \text{ for } v \notin S\}$$

There is a canonical surjective homomorphism

$$id: (a_v) \mapsto \prod_{v \text{ finite}} \mathfrak{p}_v^{\operatorname{ord}_{\mathfrak{p}_v}(a_v)}: \mathbb{I}_K \to I_K$$

whose kernel is $\mathbb{I}_{S_{\infty}}$.

Proposition 5.4.2. There is a canonical injective homomorphism

$$a \mapsto (a, a, \cdots) : K^* \to \mathbb{I}_K$$

The image of this homomorphism is discrete.

Proof. It suffices to show that the restriction of the topology on the image makes the single point set $\{1\}$ open.

Let $U = U(S, \epsilon) \ni 1$ with $S_{\infty} \subseteq S$ and $\epsilon < 1$. For $(a, a, \dots) \in U$ and $v \notin S$, $|a|_v = 1$. Hence $|a - 1|_v \leq 1$ for $v \notin S$. Thus we have $\prod |a - 1|_v \leq \epsilon^{|S|}$, this contradicts the product formula unless a = 1.

Definition 5.4.3. If we identify K^* with its image in \mathbb{I}_K , we may define the idele class group of K to be the quotient $\mathcal{C} = \mathbb{I}/K^*$.

Definition 5.4.4. There is a canonical surjective homomorphism

$$c: (a_v) \mapsto \prod |a_v|_v : \mathbb{I} \to \mathbb{R}_{>0}$$

The image is called the content of (a_v) . Define $\mathbb{I}^1 = \text{Ker}(c)$. Obviously $K^* \subseteq \mathbb{I}^1$. The quotient \mathbb{I}/K^* can not be compact since c is surjective, but \mathbb{I}^1/K^* is compact.

Definition 5.4.5. Let \mathfrak{m} be a modulus. For $\mathfrak{p}|\mathfrak{m}$, set

$$W_{\mathfrak{m}}(\mathfrak{p}) = egin{cases} \mathbb{R}_{>0}, & \mathfrak{p} ext{ real} \ 1 + \hat{\mathfrak{p}}^{m(\mathfrak{p})}, & \mathfrak{p} ext{ finite} \end{cases}$$

which is obviously a neighborhood of 1 in $K_{\mathfrak{p}}^*$. Note that when \mathfrak{p} is finite, $W_{\mathfrak{m}}(\mathfrak{p}) \subseteq \mathcal{O}_{\mathfrak{p}}^*$.

Define $\mathbb{I}_{\mathfrak{m}}$ to be the set of ideles $(a_{\mathfrak{p}})_{\mathfrak{p}}$ such that $a_{\mathfrak{p}} \in W_{\mathfrak{m}}(\mathfrak{p})$ for all $\mathfrak{p}|\mathfrak{m}$:

$$\mathbb{I}_{\mathfrak{m}} = \left(\prod_{\mathfrak{p} \nmid \mathfrak{m}} K^*_{\mathfrak{p}} \times \prod_{\mathfrak{p} \mid \mathfrak{m}} W_{\mathfrak{m}}(\mathfrak{p})\right) \cap \mathbb{I}$$

Define $W_{\mathfrak{m}}$ to be the set of ideles $(a_{\mathfrak{p}})_{\mathfrak{p}}$ in $\mathbb{I}_{\mathfrak{m}}$ such that $a_{\mathfrak{p}}$ is a unit for for all finite \mathfrak{p} not dividing \mathfrak{m} :

$$W_{\mathfrak{m}} = \prod_{\mathfrak{p}Nmid\mathfrak{m}, \mathfrak{p} \text{ infinite}} K_{\mathfrak{p}}^* \times \prod_{\mathfrak{p}|\mathfrak{m}} W_{\mathfrak{m}}(\mathfrak{p}) \times \prod_{\mathfrak{p}Nmid\mathfrak{m}, \mathfrak{p} \text{ finite}} \mathcal{O}_{\mathfrak{p}}^*$$

Note that $K_{\mathfrak{m},1} = K^* \cap \prod_{\mathfrak{p}|\mathfrak{m}} W_{\mathfrak{m}}(\mathfrak{p}) = K^* \cap \mathbb{I}_{\mathfrak{m}}$ (recall that K^* can be identified as the diagonal in \mathbb{I}).

Proposition 5.4.6. Let \mathfrak{m} be a modulus of K.

(a) The map $id: \mathbb{I}_{\mathfrak{m}} \to I^{S(\mathfrak{m})}$ defines an isomorphism

$$\mathbb{I}_{\mathfrak{m}}/K_{\mathfrak{m}\cdot 1}\cdot W_{\mathfrak{m}}\xrightarrow{\sim} C_{\mathfrak{m}}$$

(b) The inclusion $\mathbb{I}_{\mathfrak{m}} \hookrightarrow \mathbb{I}$ defines an isomorphism

$$\mathbb{I}_{\mathfrak{m}}/K_{\mathfrak{m},1} \xrightarrow{\sim} \mathbb{I}/K^*$$

Proof. (a) Obviously $K_{\mathfrak{m}\cdot 1}$ is contained in the kernel of $\mathbb{I}_{\mathfrak{m}} \to I^{S(\mathfrak{m})} \to C_{\mathfrak{m}}$. Thus there is a homomorphism

$$\mathbb{I}_{\mathfrak{m}}/K_{\mathfrak{m},1} \to C_{\mathfrak{m}}$$

Recall that $\mathbb{I}_{S_{\infty}} \cap \mathbb{I}_{\mathfrak{m}} = W_{\mathfrak{m}}$ is the kernel of *id*, hence the homomorphism

$$\mathbb{I}_{\mathfrak{m}}/K_{\mathfrak{m},1}\cdot W_{\mathfrak{m}}\xrightarrow{\sim} C_{\mathfrak{m}}$$

is an isomorphism.

(2) The kernel of $\mathbb{I}_{\mathfrak{m}} \to \mathbb{I}/K^*$ is $K^* \cap \mathbb{I}_{\mathfrak{m}} = K_{\mathfrak{m},1}$. The surjectivity follows from the weak approximation theorem.

Proposition 5.4.7. Let $S \supseteq S_{\infty}$ be a finite set of primes and G an Abelian group. If $\psi : I^S \to G$ admits a modulus with $S = S(\mathfrak{m})$, then there exists a unique homomorphism $\phi : \mathbb{I} \to G$ such that

- (a) ϕ is continuous (G with the discrete topology).
- (b) $\phi(K^*) = 1$.
- (c) $\phi(a) = \psi(id(a))$, for all $a \in \mathbb{I}^S \triangleq \{a \in \mathbb{I} | a_v = 1 \text{ for all } v \in S\}$

Proof. There is a diagram

Define ϕ to be the composite $\mathbb{I} \to G$.

Remark 5.4.8. The canonical homomorphism $\pi_{\mathfrak{m}} : \mathbb{I} \to C_{\mathfrak{m}}$ is the unique homomorphism satisfying

- (a) $\pi_{\mathfrak{m}}(K^*) = 1.$
- (b) $\pi_{\mathfrak{m}}(a) = id(a)$ for all $a \in \mathbb{I}^{S(\mathfrak{m})}$.

If $\mathfrak{m}|\mathfrak{m}'$, then $\pi_{\mathfrak{m}}$ is precisely the map composing $\pi_{\mathfrak{m}}$ and $C_{\mathfrak{m}'} \to C_{\mathfrak{m}}$. Therefore, there is a continuous homomorphism $\pi : \mathbb{I} \to \lim_{\leftarrow} C_{\mathfrak{m}}$. This map is actually surjective.

Definition 5.4.9. Let L be a finite extension of K, let v be a prime of K. Recall that

$$L \otimes_K K_v \cong \prod_{w|v} L_w$$

then we may define

$$\operatorname{Nm}_{L/K} : \mathbb{I}_L \to \mathbb{I}_K \quad (a_w) \mapsto (b_v) = (\prod_{w|v} \operatorname{Nm}_{L_w/K_v} a_w)$$

Proposition 5.4.10. There is a commutative diagram:

$$\begin{array}{ccc} L^* & \longrightarrow & \mathbb{I}_L & \longrightarrow & I_L \\ & & & & \downarrow^{\operatorname{Nm}_{L/K}} & & \downarrow^{\operatorname{Nm}_{L/K}} \\ & & & & \downarrow^{\operatorname{Nm}_{L/K}} & & \downarrow^{\operatorname{Nm}_{L/K}} \\ K^* & \longrightarrow & \mathbb{I}_K & \longrightarrow & I_K \end{array}$$

5.5 The Main Theorem in Terms of Ideles

Lemma 5.5.1. Let L be a finite Abelian extension of K, let v be a prime of K and w one extension. Denote by D(w) the decomposition group, which is isomorphic to $\text{Gal}(L_w/K_v)$. The local class field theory tells us there is a homomorphism

$$\phi_v: K_v^* \to D(w) \subseteq G$$

Moreover, we have that the subgroup D(w) and ϕ_v are independent of the choice of w.

Proposition 5.5.2. There exists a unique continuous homomorphism $\phi_K :: \mathbb{I} \to \text{Gal}(K^{\text{ab}}/K)$ with the following property: for any $L \subseteq K^{\text{ab}}$ finite over K and any prime w of L lying over a prime v of K, the diagram

$$\begin{array}{ccc} K_v^* & \stackrel{\phi_v}{\longrightarrow} \operatorname{Gal}(L_w/K_v) \\ & & \downarrow \\ & & \downarrow \\ \mathbb{I}_K \xrightarrow{a \mapsto \phi_K(a)|_L} \operatorname{Gal}(L/K) \end{array}$$

commutes.

Proof. We may define

$$\phi_{L/K} : \mathbb{I}_K \to \operatorname{Gal}(L/K) \quad a \mapsto \prod_v \phi_v(a_v)$$

and ϕ_K is the inverse limit.

Theorem 5.5.3 (Reciprocity Law). The homomorphism $\phi_K : \mathbb{I}_K \to \text{Gal}(K^{\text{ab}}/K)$ has the following properties:

- (a) $\phi_K(K^*) = 1$
- (b) for every finite Abelian extension L of K, ϕ_K defines an isomorphism

$$\phi_{L/K} : \mathbb{I}_K / (K^* \cdot \operatorname{Nm}(\mathbb{I}_L)) \to \operatorname{Gal}(L/K)$$

(b)' ϕ_K defines an isomorphism

$$\phi_{L/K} : \mathcal{C}_K / \operatorname{Nm}(\mathcal{C}_L) \to \operatorname{Gal}(L/K)$$

Theorem 5.5.4 (Existence Theorem). Fix an algebraic closure K^{al} of K; for every open subgroup $N \subseteq C_K$ of finite index, there exists a unique Abelian extension L of K contained in K^{al} such that $\operatorname{Nm}_{L/K} C_L = N$.

Definition 5.5.5. A subgroup of C_K is a norm group if it is of the form $Nm(C_L)$ for some finite Abelian extension L of K, L is called the class field of K belonging to N.

6 L-series and the Density of Primes

6.1 Dirichlet series and Euler products

Definition 6.1.1. A Dirichlet series is a series of the form

$$f(s) = \sum_{n \ge 1} \frac{a(n)}{n^s}, \quad a(n) \in \mathbb{C}, s = \sigma + it \in \mathbb{C}$$

An Euler product belonging to a number field K is a product of the form

$$g(s) = \prod_{\mathfrak{p}} \frac{1}{(1 - \theta_1(\mathfrak{p})\mathbb{N}\mathfrak{p}^{-s})\cdots(1 - \theta_d(\mathfrak{p})\mathbb{N}\mathfrak{p}^{-s})}, \quad \theta_i(\mathfrak{p}) \in \mathbb{C}, \quad s \in \mathbb{C}$$

in which \mathfrak{p} runs over all but finitely many of the prime ideals of \mathcal{O}_K .

6.2 Convergence Results

Proposition 6.2.1. Let

$$f(s) = \sum_{n \ge 1} \frac{a(n)}{n^s}$$

Write $S(x) = \sum_{n \leq x} a(n)$, and suppose that there exists positive constants a and b such that $|S(x)| \leq ax^b$ for all large x. Then the series f(s) converges uniformly for s in

$$D(b, \delta, \epsilon) = \{\Re(s) \ge b + \delta, |\arg(s - b) \le \frac{\pi}{2} - \epsilon\}$$

for all $\delta, \epsilon > 0$, and it converges to an analytic function on the half plane $\Re(s) > b$.

Lemma 6.2.2. The zeta function $\zeta(s)$ has an analytic continuation to a meromorphism function on $\Re(s) > 0$ with its only (possible) pole at s = 1.

Lemma 6.2.3. For s real and s > 1,

$$\frac{1}{s-1} \le \zeta(s) \le 1 + \frac{1}{s-1}$$

Hence $\zeta(s)$ has a simple pole at s = 1 with residue 1, i.e.,

$$\zeta(s) = \frac{1}{s-1}$$
 + holomorphic function near 1

Proposition 6.2.4. Let f(s) be a Dirichlet series for which there exist real constants C and b, b < 1, such that

$$|S(n) - a_0 n| \le c n^b$$

Then f(s) extends to a meromorphic function on $\Re(s) > b$ with a simple pole at s = 1 with residue a_0 , i.e., near s = 1

$$f(s) = \frac{a_0}{s-1}$$
 + holomorphic function

near s = 1.

Proposition 6.2.5. Let χ be a Dirichlet character of a number field K. For all s with $\Re(s) > 1$, the Euler product $\prod_{\mathfrak{p}\nmid\mathfrak{m}} \frac{1}{1-\chi(\mathfrak{p})\mathbb{N}\mathfrak{p}^{-s}}$ converges to $L(s,\chi)$.

Definition 6.2.6. Let K be a number field, let \mathfrak{m} be a modulus. For every class \mathfrak{l} in $C_{\mathfrak{m}} = I^{\mathfrak{m}}/i(K_{\mathfrak{m},1})$, we define the partial zeta function

$$\zeta(s,\zeta) = \sum_{\mathfrak{a} \ge 0, \mathfrak{a} \in \mathfrak{l}} \frac{1}{\mathbb{N}\mathfrak{a}^s}$$

Note that

$$\begin{split} L(s,\chi) &= \sum_{\mathfrak{l} \in C_{\mathfrak{m}}} \chi(\mathfrak{l})\zeta(s,\mathfrak{l}) \\ \zeta_K(s) &= \sum_{\mathfrak{l} \in C_{\mathfrak{m}}} \zeta(s,\mathfrak{l}) \end{split}$$

Let $S(x, \mathfrak{l}) = |\{\mathfrak{a} \in \mathfrak{l} | \mathfrak{a} \text{ integral } \mathbb{N}\mathfrak{a} \leq x\}|.$

Theorem 6.2.7. The partial zeta function is analytic for $\Re(s) > 1 - \frac{1}{d}$ except a simple hole at s = 1.

6.3 Density of the Prime Ideals Splitting in an Extension

Definition 6.3.1. For a set of prime ideals of K, we define $\zeta_{K,T}(s) = \prod_{\mathfrak{p}\in T} \frac{1}{1-\mathbb{N}\mathfrak{p}^{-s}}$. If some positive integral power $\zeta_{K,T}(s)^n$ of $\zeta_{K,T}(s)$ extends to a meromorphic function on a neighborhood of 1 having a pole of order m at 1, then we say that T has polar density $\delta(T) = \frac{m}{n}$.

Proposition 6.3.2. (a) The set of all prime ideals of K has polar density 1.

(b) The polar density of every set (having one) is ≥ 0 .

(c) Suppose that T is the disjoint union of T_1 and T_2 . If any two of T, T_1 , T_2 have polar densities, then so also does the third, and $\delta(T) = \delta(T_1) + \delta(T_2)$.

- (d) If $T \subseteq T'$, then $\delta(T) \leq \delta(T')$ (when both are defined).
- (e) A finite set has density 0.

Proposition 6.3.3. If T contains no primes for which $\mathbb{N}\mathfrak{p}$ is a prime, then $\delta(T) = 0$.

Corollary 6.3.4. Let T_1 and T_2 be sets of prime ideals in K. If the sets differ only by primes for which $\mathbb{N}\mathfrak{p}$ is not prime, also we assume that one of them has a polar density, then the other one has the same polar density.

Theorem 6.3.5. Let *L* be a finite extension of *K*, and let *M* be its Galois closure. Then the set of prime ideals of *K* that splits completely in *L* has density $\frac{1}{|M:K|}$.

6.4 Density of the Prime Ideals in an Arithmetic Progression

We omit some basic knowledge of Dirichlet density.

The key result is

Theorem 6.4.1. Let \mathfrak{m} be a modulus for K, and let H be a congruence subgroup for \mathfrak{m} :

$$I^{\mathfrak{m}} \supseteq H \supseteq i(K_{\mathfrak{m},1})$$

Then

$$\delta(\{\mathfrak{p} \in H\}) = \begin{cases} \frac{1}{(I^{S(\mathfrak{m})}:H)}, & \text{if } L(1,\chi) \text{ is nonzero for all characters } \chi \neq \chi_0 \text{ of } I^{S(\mathfrak{m})}/H; \\ 0, & \text{otherwise} \end{cases}$$

Theorem 6.4.2. For every Galois extension L/K and modulus \mathfrak{m} of K,

 $(I^{S(\mathfrak{m}):i(K_{\mathfrak{m},1})\cdot\operatorname{Nm}(I_L^{S(\mathfrak{m})})})$

7 Global Class Field Theory: Proofs of the Main Theorems

7.1 Outline

Note that we have constructed a homomorphism

$$\phi_{L/K}: \mathcal{C}_K \to \operatorname{Gal}(L/K)$$

We will verify the properties. We will first express the cohomology groups

$$H^{0}(G, \mathbb{I}_{L}) = \mathbb{I}_{K}$$
$$H^{r}(G, \mathbb{I}_{L}) = \bigoplus_{v} H^{r}_{T}(G^{v}, (L^{V})^{*})$$

Then, we will prove the following propositions

for any cyclic extension L/K, $(\mathcal{C}_K : \operatorname{Nm}_{L/K}\mathcal{C}_L) \ge [L:K]$

Also, we will prove the second inequality

Theorem 7.1.1. For every Galois extension L/K of number fields,

- 1. $(\mathcal{C}_K : \operatorname{Nm}_{L/K} \mathcal{C}_L) \leq [L : K];$
- 2. $H^1(G, \mathcal{C}_L) = 1;$
- 3. $H^2(G, \mathcal{C}_L)$ has order $\leq [L:K]$.

7.2 The Cohomology of Ideles

Lemma 7.2.1. Let L/K be a finite Galois extension of number fields with Galois group G. Let v be a prime of K, then G acts on the set of the primes w of L which satisfy w|v.

Given a $w_0|v$. Let G_{w_0} be its decomposition group. For $\alpha \in \prod_{w|v} L_w$ and $\sigma \in G$, define $f_{\alpha}(\sigma) = \sigma(\alpha(\sigma^{-1}w_0))$. Then $f_{\alpha} \in \operatorname{Ind}_{G_{w_0}}^G(L_{w_0})$, and the map

$$\alpha \mapsto f_{\alpha} : \prod_{w \mid v} L_w \to \operatorname{Ind}_{G_{w_0}}^G(L_{w_0})$$

(C) F.P. (1800010614@pku.edu.cn)

2023.2

is an isomorphism of G-modules. Similar statements hold with L_w replaced with L_w^* and with $\mathcal{O}_{L_w}^*$.

Corollary 7.2.2. By Shapiro lemma, for all r,

$$H^r(G, \prod_{w|v} L^*_w) \cong H^r(G_{w_0}, L^*_{w_0})$$

Remark 7.2.3. The group $H^r(G_{w_0}, L^*_{w_0})$ is independent of the choice of w_0 up to a canonical isomorphism. From now on we may set

 $G^v = G_w, \quad L^v = L_w, \quad U^v = \mathcal{O}^*_{L_w}$

Proposition 7.2.4. For all $r \ge 0$,

$$H^r_T(G, \mathbb{I}_L) \cong \bigoplus_v H^r_T(G^v, L^{v*})$$

Proof. Let $\mathbb{I}_{L,S} = \prod_{v \in S} (\prod_{w \mid v} L_w^*) \times \prod_{v \notin S} (\prod_{w \mid v} \mathcal{O}_{L_w}^*)$. Thus \mathbb{I}_L is the direct union of all $\mathbb{I}_{L,S}$ and then

$$H^{r}(G, \mathbb{I}_{L}) = \lim_{\to} H^{r}(G, \mathbb{I}_{L,S}) = \lim_{\to} \left(\prod_{v \in S} H^{r}(G, \prod_{w \mid v} L_{w}^{*}) \times \prod_{v \notin S} H^{r}(G, \prod_{w \mid v} \mathcal{O}_{L_{w}}^{*}) \right)$$

The right hand is equal to $\prod_{v} H^{r}(G^{v}, L^{v*})$ by the corollary above.

Corollary 7.2.5. (a) $H^1(G, \mathbb{I}_L) = 0.$

(b)
$$H^2(G, \mathbb{I}_L) \cong \bigoplus_v (\frac{1}{n_v} \mathbb{Z}/\mathbb{Z})$$
, where $n_v = [L^v : K_v]$.

Lemma 7.2.6. If L/K is a finite cyclic extension of local fields, then $h(\mathcal{O}_L^*) = 1$ and $h(L^*) = [L : K]$.

Proof. From the exact sequence

$$0 \to \mathcal{O}_L^* \to L^* \to \mathbb{Z} \to 0$$

we can know that $h(L^*) = h(\mathbb{Z}) \cdot h(\mathcal{O}_L^*)$.

From the general local Artin map, we know that

$$|H^0(G_{L/K}, L^*)| = |G^{ab}_{L/K}| = [L:K]$$

and

$$|H^1(G_{L/K}, L^*)| = |H_T^{-1}(G_{L/K}, \mathbb{Z})| = 1$$

Proposition 7.2.7. Let S be a finite set of primes of K, and let T be the set of primes of L lying over primes in S. If L/K is cyclic, then the Herbrand quotient

$$h(\mathbb{I}_{L,T}) = \prod_{v \in S} n_v$$

Proof. Recall that

$$\mathbb{I}_{L,T} = \left(\prod_{v \in S} (\prod_{w|v} L_w^*)\right) \times \left(\prod_{v \notin S} (\prod_{w|v} \mathcal{O}_{L_w}^*)\right)$$

By the lemma above, the herbrand quotient of $\mathbb{I}_{L,T}$ is equal to

$$\prod_{v \in S} h(G^v, L^{v*}) = \prod_{v \in S} n_v$$

Proposition 7.2.8. For every finite Galois extension L/K of number fields, $\operatorname{Nm}_{L/K} \mathbb{I}_L$ contains an open subgroup of \mathbb{I}_K and therefore is itself open.

Proof. Let $S \supseteq S_{\infty}$ be the set of primes in K that ramify, and T the set of primes lying over S. Consider the subgroup $\operatorname{Nm}_{L/K} \mathbb{I}_{L,T} \subseteq \operatorname{Nm}_{L/K} \mathbb{I}_L \subseteq \mathbb{I}_K$. By the theory of local fields,

$$\operatorname{Nm}_{L/K} \mathbb{I}_{L,T} = \prod_{v \notin S} \mathcal{O}_{K_v}^* \times \prod_{v \in S} (\text{an open subset of finite index in } K_v^*)$$

Thus $\operatorname{Nm}_{L/K} \mathbb{I}_{L,T}$ is open in $\mathbb{I}_{K,S}$ and then open in \mathbb{I}_K .

Remark 7.2.9. The norm map $\operatorname{Nm}_{L/K} : \mathbb{I}_L \to \mathbb{I}_K$ induces a norm map between \mathcal{C}_L and \mathcal{C}_K , and there is a commutative diagram:

$$\begin{array}{cccc} 0 & \longrightarrow & L^* & \longrightarrow & \mathbb{I}_L & \longrightarrow & \mathcal{C}_L & \longrightarrow & 0 \\ & & & & & & & \downarrow_{\mathrm{Nm}} & & & \downarrow_{\mathrm{Nm}} \\ 0 & \longrightarrow & K^* & \longrightarrow & \mathbb{I}_K & \longrightarrow & \mathcal{C}_K & \longrightarrow & 0 \end{array}$$

with every row exact. And further, there is an isomorphism

 $\mathbb{I}_K/K^* \cdot \operatorname{Nm}(\mathbb{I}_L) \to \mathcal{C}_K/\operatorname{Nm}(\mathcal{C}_L)$

7.3 The Cohomology of the Units

Let L/K be a finite extension of number fields with Galois group G. Let $S \supseteq S_{\infty}$ be a finite set of primes of K, and let T be the set of primes of L lying over a prime of K in S. Define the group of T-units to be

$$U(T) = \{ \alpha \in L | \operatorname{ord}_w(\alpha) = 0, \ \forall w \notin T \}$$

This is stable under G since T is.

We omit the proof of the following property.

Proposition 7.3.1. Assume that G is cyclic. Then

$$h(U(T)) = \frac{n}{\prod_{v \in S} n_v}$$

where n = [L:K] and $n_v = [L^v:K_v]$.

7.4 Cohomology of the Idele Classes I: The first Inequality

Lemma 7.4.1. Let K be a number field, and let $S \supseteq S_{\infty}$ be a finite set of primes of K containing a set of generators for the ideal class group of K. Then

$$\mathbb{I}_K = K^* \cdot \mathbb{I}_S$$

Proof. The condition that S contains a set of generators for the ideal class group of K means that every fractional ideal \mathfrak{a} can be written as

 $\mathfrak{a} = \mathfrak{b} \cdot (c)$

where $\mathfrak{b} \in \langle S \rangle$ and (c) is a primary ideal. Therefore, every element in $I/\langle S \rangle$ can be represented by a primary fractional ideal. Thus, $I/\langle S \rangle \cdot i(K^*) = 0$.

Recall the map $\mathbb{I}_K \to I^S = I/\langle S \rangle$ defined by $(a_v) \to \prod_{v \in S} \mathfrak{p}_v^{\operatorname{ord}_{p_v}(a_v)}$ induces an isomorphism

$$\mathbb{I}/\mathbb{I}_S \to I^S$$

Thus,

$$\mathbb{I}/K^* \cdot \mathbb{I}_S \cong 0$$

Theorem 7.4.2. For any finite cyclic extension L/K of number fields, $h(\mathcal{C}_L) = [L:K]$.

Proof. Let $S \supseteq S_{\infty}$ be a finite set of primes such that S contains all primes that ramify in L and all primes below the set of \mathfrak{P} which generates the ideal class group of L.

The last requirement actually means that $\mathbb{I}_L = \mathbb{I}_{L,T} \cdot L^*$, where T is a set of primes lying over a prime in S.

Then

$$\mathcal{C}_L = \mathbb{I}_L / L^* \cong \mathbb{I}_{L,T} / L^* \cap \mathbb{I}_T$$

Note that

$$L^* \cap \mathbb{I}_T = U(T)$$

we have $h(\mathcal{C}_L) = h(\mathbb{I}_{L,T})/h(U(T)) = [L:K].$

Corollary 7.4.3 (The first inequality). If L/K is a cyclic extension of degree n, then

$$(\mathbb{I}_K : K^* \cdot \operatorname{Nm}(\mathbb{I}_L)) \ge n$$

7.5 Cohomology of the Idele Classes II: The Second Inequality

Theorem 7.5.1. For every Galois extension L/K of number fields,

- 1. $(\mathcal{C}_K : \operatorname{Nm}_{L/K} \mathcal{C}_L) \leq [L : K];$
- 2. $H^1(G, \mathcal{C}_L) = 1;$

3. $H^2(G, \mathcal{C}_L)$ has order $\leq [L:K]$.

Proof. Step 1. It suffices to show this theorem in the case that G is a p-group.

This follows from that the maps

$$\operatorname{Res}: H^r_T(G, M) \to H^r_T(H, M)$$

are surjective for all sylow p-subgroups H.

Step 2. It suffices to show this theorem in the case that G is a cyclic group of prime order p.

We can prove this step by induction on [G:1].

Step 3. When G is cyclic, all three statements are equivalent.

This is obvious.

For the rightness of (a) when G is cyclic, see 6.4.2.

7.6 Completion of the Proof of the Reciprocity Law

Theorem 7.6.1. (a) Let L/K be a finite Abelian extension of number fields. Then $\phi_{L/K}$ takes the value 1 on the principal ideles $K^* \subseteq \mathbb{I}_K$.

(b) Let L/K be a finite Galois extension of number fields. Then $\sum \text{Inv}_v(\alpha) = 0$ for all $\alpha \in H^2(G_{L/K}, L^*)$.

Proof. Need to be created.

7.7 The Existence Theorem

Need to be created.