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1 Local Class Theory: Lubin-Tate Theory

Proposition 1.0.1. A local field K is a field that is locally compact with respect to a nontrivial

absolute value. Thus it is

e a finite extension of @, for some p
e a finite extension of the field of Laurent series F,,((7))
e RorC

Remark 1.0.2. Some notations: when K is non-Archimedean, its residue field has characteristic
p > 0 and order q (a power of p), the ring of integers in K is denoted by Ok (or A), its mazximal
ideal by mg (or just m), and its group of units by O (or Ux). A generator (note that Ok is
an DVR and hence is a PID) of m is called a prime element of K (or a uniformizer or a local
uniformizing parameter). If w is a prime element of K, then every a € K* can be written uniquely
as the form a = ur™ with u € O} and m € Z. Hence K* = O} x n2. We define ordk(a) = m.

The normalized absolute value on K is defined by |a| = g ordr(a),

We let K®' denote a fized algebraic closure of K (or separable algebraic closure in the case that
K has characteristic p > 0). Both ordg and | - | have unique extensions on K®. Let K* denote
the union of all Abelian finite extension of K, it is again a Abelian extension with Galois group is

the quotient of Gal(K®/K) by the closure of its commutator subgroup.

1.1 Statements of the Main Theorems

Proposition 1.1.1. Let L be a finite unramified extension of K. Then Gal(L/K) = Gal(l/k)
and hence is cyclic, generated by the unique element o = Froby,/x such that ca = a?(mod my,)

for all @ € Op, where ¢ = |Og /mg]|.

Theorem 1.1.2 (Local Reciprocity Law). For every non-Archimedean local field K, there exists
a unique homomorphism
or : K* — Gal(K*/K)

with the following properties:

e for every prime element 7 of K and every finite unramified extension L of K, ¢ (7) acts on

L as Frobyp, k.

e for every finite Abelian extension L of K, Nmy g (L*) is contained in the kernel of a —

oK (a)|r, and ¢k induces an isomorphism
In particular (K* : Nmy /i (L*)) = [L: K].

We call ¢ and ¢r, the local Artin maps for K and L/K. They are often also called the
local reciprocity mas and denoted by reck and recy ., and ¢ is often called the norm residue

map or symbol and denoted a — (a, L/K).

(©) F.P. (1800010614@pku.edu.cn) 1 2023.2
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Remark 1.1.3. The right hands of the isomorphisms

form an inverse system (Gal(L/K), D). Therefore, there is an isomorphism between the completion
of the left hand and the inverse limit

oK+ K* — Gal(K??/K)

where the topology of the completion K* is determined by the fundamental system of neighborhoods
of 1 formed by the norm groups. This topology is called by the norm topology.

Remark 1.1.4. If L = K" the unramified closure of K, clearly we have

Gal(K"™"/K) = Gal(k/k) = lim(Z/nZ) = Z
Then the first condition can be re-stated as: ¢ (m) act as Frobg on K", where Frobg — o :
(x — z9).

Remark 1.1.5. When L/K is finite and unramified, Gal(L/K) is a cyclic group generated by
¢ (m)|L = Froby k., thus for any a = ur® € K* (u € O,k € Z) we have ¢ (a)|r = Frob]z/K.
In particular, for a € O, ¢ (a)|L acts trivially on L, that is, O3 C ker(¢r/x) = Nmp /i (L").

Note that
O 214+mg 21l+my D+

form a fundamental system of neighborhoods of 1 in O%. If a finite Abelian extension L is
unramified over K, then we say L/K has conductor 0. Otherwise, the smallest f such that
1+mf C ker(¢r, ) is called the conductor of L/K.

In the following we will introduce the local existence theorem, and then we obtain a fundamental

system of neighborhoods of 1

(I4+m™) - (7™) = (1+m") x mZ
CK* =0 =205 %7

then K* = O X 7. The identify map
K*(the usual topology) — K™ (the norm topology)

s continuous, thus there is a natural commutative diagram

0 o K* Z 0
0 o) K* Z 0

The decomposition Gal(K*?/K) = K* = Oy - l depends on the choice of w. If we fix a prime

element m, then K has the decomposition
K% = K, . K™
- s

(©) F.P. (1800010614@pku.edu.cn) 2 2023.2
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where K is the subfield fized by ¢ (m) and K" is exactly the field fived by ¢ (O3 ). Clearly K
is the union of all finite Abelian extensions L/K such that m € Nm(L*). For ezample.

Q" =(JalG) - ( U Q)
n (m,p)=1

Corollary 1.1.6. (a) The map L — Nm(L"*) is a bijection from the set of finite Abelian extensions
of K onto the set of norm groups in K*.

(b) LC L' <= Nm(L') D Nm(L)

(¢) Nm((L - L')*) = Nm(L) N Nm(L')

(d) Nm((L N L')*) = Nm(L*) - Nm(L'")

(e) Every subgroup of K* containing a norm group is itself a norm group.

Lemma 1.1.7. Let L be an extension of K. If Nm(L*) is of finite index in K*, then it is open.

Proof. We first show that Ok is compact. Recall that a metric space is compact if and only if it
is complete and totally bounded. The completeness of O is from the definition. Note that any
element in Ok has the form
a=38)+s1m+ -+, 4
there are finite elements
S0+ 814+ sy
such that a is within [7""!| of such an element. Therefore O is totally bounded and then is

compact.

As a closed subset of Ok, O is also compact. Similarly O7 is compact in L. Then Nm(Oj )

is a compact subgroup of K* and hence a closed subgroup of Oj-. One can check that
Nm(L*) N OF = Nm(O7)
Then there is a natural injective homomorphism
O3 /Nm(07) — K*/Nm(L")

Thus Nm(07) is closed of finite index in O}, it is then an open subgroup of Oj,. Note that O
itself is a open subgroup of K* (since the valuation | - | is discrete and then we may choose € such
that O3 = Uer% {y : ly — 2| < €}), Nm(0O7) is open in K*. Therefore, Nm(L*) is a subgroup

containing an open subgroup, hence is open as the union of open cosets. |

Theorem 1.1.8 (Local Existence Theorem). The norm groups (the set of the subgroups like

Nm(L*) for finite Abelian extension L) in K* are exactly the open subgroups of finite index.

Remark 1.1.9. If K has characteristic 0, every subgroup H C K* of finite index is open, but this

s not true for K with characteristic p > 0.

Remark 1.1.10. If L/K is a finite Abelian extension with conductor 0, that is, O C Nm(L*).
Since Nm(L*) has finite index in K*, there exists a minimal number n such that 7™ € Nm(L*), it is
not hard to check that in this case Nm(L*) = oy O ™. Consider the n-dimensional unramified
extension L' /K, its norm group Nm(L'™*) is also the group ey, O™, then Nm(L™*) = Nm(L*),
which implies L = L.

(©) F.P. (1800010614@pku.edu.cn) 3 2023.2
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1.1.1 Outline of the proofs of the main theorems

Theorem 1.1.11. The mapping ¢x described in the “Local Reciprocity Law” is unique.

Proof. If the mapping ¢x exists and the “Local Existence Theorem” holds, let 7 be a prime
element of Ok and we may choose a field Ky, such that Nm(Kr ) = (1+m™) (), then the field
K =U, >, Kpin- Note that K&> = K- K", and ¢ (7) acts K" as Frob, the action of ¢ ()
on K2 is determined. Hence ¢(m) = ¢'(w) for any two mapping ¢, ¢’ satisfying the conditions
and any 7. Note that {m : 7 is a prime element} generates the whole multiplicative group K*, we
obtain that ¢ = ¢'. [ |

For the existence of ¢ and the proof of the “Local Existence Theorem”, we will give sketches

of three proofs, which will be filled up in the following sections.

Sketch of proof I: from Lubin-Tate and Hasse-Arf. The theory of Lubin and Tate constructs the
fields Ky, for each 7, and thus we obtain the structure of K . And the theory also provides the

homomorphism ¢, : O} — Gal(K;/K). Moreover, it shows that it can be uniquely extended to
K* — Gal(K, - K" /K) such that ¢(7)|xuw = Frobg are independent of 7.

We can check that the conclusion holds for K, - K", thus it remains to show that Kb =

K, - KU, This follows from the Hasse-Arf theorem. [ |
Sketch of proof II: from Lubin-Tate and Cohomology. |
Sketch of proof III: using Cohomology and Hilbert symbol. |

2 The Cohomology of Groups

2.1 Cohomology

Definition 2.1.1. Let H C G be groups. For an H-module M, define Indg to be the set of
maps (not necessarily homomorphisms) ¢ : G — M such that p(hg) = hp(g) for all h € G. Then
Ind% (M) becomes a G-module with (g¢)(z) = ¢(zg). A homomorphism a : M — M’ induces a
homomorphism

@ — aog:Ind% (M) — Ind% (M)

Remark 2.1.2. The category of G-modules can be identified with the category of the Z|G]-modules
Lemma 2.1.3. (a) We have Homg (M, Ind$(N)) = Homy (M, N)
(b) The functor Ind% is exact.

(c) Let ¢ be the natural map
¢ : nd%(N) — N

@ — (1)
this is an H-homomorphism. Then any H-homomorphism M — N can be lifting to a G-
homomorphism M — Ind%(N).

(©) F.P. (1800010614@pku.edu.cn) 4 2023.2
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Definition 2.1.4. If H = {1}, an H-module is just an Abelian group. Thus Ind% (M) = {¢ :
G — M} = Hom(Z[G], M). A G-module is said to be induced if it is isomorphic to this for some
Abelian group M.

Proposition 2.1.5. The category of G-modules has enough injectives. Indeed, for any injective

element I in the category of Abelian groups, Ind(I) is injective as G-modules.

Definition 2.1.6. Let M be a G-module, and choose an injective resolution

0 1
0= M—-10 4y

Then it induces a complex
—1 0
04 (19 L (1H - ...

Define the rth cohomology group of G with coefficients in M to be
H"(G, M) = Ker(d") /Tm(d" ")

Proposition 2.1.7. We have H*(G, M) = M® = Homg(Z, M), where Z is treated as a trivial
G-module.

Proposition 2.1.8. If M is injective, then for r > 0 we have H"(G, M) = 0.

Proposition 2.1.9 (Shapiro’s lemma). Let H be a subgroup of G. For every H-module N, there

is a canonical isomorphism

H"(G,Ind%(N)) — H"(H, N)
for all » > 0.

Corollary 2.1.10. If M is an induced G-module, then H"(G,M) = H"({1}, My) = 0 for all
r > 0.

Definition 2.1.11. Let P,,r > 0 be the free Z-module with basis the (r 4+ 1)-tuples (go,- - , gr)
of elements of G, endow the action of G such that
9(907 e 791“) = (9905 e 7991”)

Note that P, is also free as a Z[G]-module, with basis {(1,¢91,--- ,9r)|¢9; € G}. Define a homomor-
phism
dr : PT — Pr—l

T

(90, +90) = S (-1 (g0, G-+ 1 91)

=0

Then (P,,d,) defines a complex
R RN B RONy -X
Let € : Py — Z be the map sending every basis element (gg) to 1.

Proposition 2.1.12. The complex
PeSZ—0

is exact.

(©) F.P. (1800010614@pku.edu.cn) 5 2023.2
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Proposition 2.1.13. P, is actually a projective resolution of Z, then we have

H"(G,M) = H"(Homg(P,, M))
Remark 2.1.14. Note that the elements in Homg(P., M) can be identified with functions ¢ :
Gl = M fized by G, i.e.,

v(990,- -+, 99) = 9(e(go;- -+, 9r))

Thus Homg(Py, M) can be identified with the set C™(G, M) of @’s satisfying this condition. Such
@ are called homogeneous r-cochains of G with values in M. The boundary map dr: C”"(G, M) —
C™ (G, M) induced by d"" is

(dr(p)(go, T 7g7“+1) = Z(_l)igo(g(% T 7gia t 797"—}-1)
Then the proposition above says that
H"(G, M) = Ker(d")/Im(d" 1)

Let C" (G, M) be the group of inhomogeneous r-cochains of G with values in M consisting of all
maps ¢ : GT — M. Set G® = {1} and hence C°(G, M) = M. Define

d":CT(G,M) — C"TH(G, M)

by

(@) (g1, 9r41) = 010(g2, -+ grr)+ (=1 (g1, -+, g5 g5415 -+ grr))H(=1)" g1, -+ gr)
j=1

Define
Z"(G,M) = Ker(d")

B"(G, M) =TIm(d" ")

Note that for p € C™(G, M), it only depends on the values of (1,96191, e ,galgr), or equiv-
alently, ¢ can one-to-one correspond to a function on the set {(g1,9192, - ,91---9r)|gi € G}. If

we make the coordinate transformation
@91, 5 90) = p(1, 91,9192, 91"~ Gr)
we obtain an element ¢’ € C"(G, M). And we have

T
(@) (g, gr1) = 016 (92, s go1) + D (=1 (g1, gig541, s gr1) + (1) (g1, )
j=1

T
= g10(1, 92,9203, 92+ Grr1) T D_(=1I(1, g1, 191+ Gj-1, 01 GiGi41, 1 g1 Gri1)
7=1

+ (=11, 91,9192, , 91 gr)
=(d"¢) (g1, + Gr1)

Therefore, we build a bijection between (C,d") and (C",d"), and then

H"(G, M) = Z"(G, M)/B"(G, M)

(©) F.P. (1800010614@pku.edu.cn) 6 2023.2
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Example 1. We use the remark above to compute H' = Z!/B'. Compute that
BYG, M) = Im(M = C°(G, M) LiN CHG, M)) = {¢: G — M|p(g) = gm — m for some m € M}

ZNG, M) ={p: G — M|gip(g2) + ¢(g1) = ¢(g192)}

We call the elements in Z!(G, M) the crossed homomorphism and the elements in B(G, M) the

principal crossed homomorphism.

In particular, if the action of G on M is trivial, i.e., gm = m. Then B! = {0} and Z! =
Hom(G, M).

In particular, if G is generated by a single element o, let ¢ be a crossed homomorphism. Note
that

Define a map Nmg : M — M via m — >__om, then H'(G, M) = Ker(Nmg)/(o — 1) M.
Proposition 2.1.15. If L is a finite Galois extension of a field K, let G = Gal(L/K), then L and
L* become G-modules. We have H!(G,L*) = 0.

Proof. The group Z'(G, L*) consists of all maps ¢ : G — L* such that p(02)" - p(01) = @(0102),
where 0; € (. Fix an element a € L*, and let b = > __~ ¢(c)a’. We first suppose that b # 0.
Then b” = 3" ¢(0)™ - a(7). Compute that

@(T)Tb = Z@(T)LP(O.)T . a(TU) — Z 90(’7'0') . a(TO’) —p

That is, ¢(7) = b/7b. Then ¢ is in BY(G, L*).

It remains to show that there exists an element a for which b # 0. Indeed, if > ¢(0)o is
a zero map, by Artin theorem (see https://math.stackexchange.com/questions/2082648/pr

oof-of-artins-theorem-linearly-independent-functions) every (o) is 0. [ |

Corollary 2.1.16. Let L/K be a cyclic extension, and let o generate Gal(L/K). If Nmy xa = 1,
then a is of the form ob/b.

Proposition 2.1.17. With the same hypothesis above, we have H"(G, L) = 0 for all » > 0.

Proof. Choose an element « such that {ca : ¢ € Gal(L/K)} forms a normal basis of L/K

(see https://en.wikipedia.org/wiki/Normal_basis). Thus there exists an isomorphism of

G-modules
Zagab—> Zagaa:K[G] — L
oeG ceG
But K[G] = Ind{' K, thus H"(G, L) = H"(1,K) = 0 for > 0. [

(©) F.P. (1800010614@pku.edu.cn) 7 2023.2
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Definition 2.1.18. Let M and M’ respectively be G and G’-modules. Homomorphisms

a:G =G, B:M-—-M
are said to be compatible if

Blalg)m) = g(B(m))
Then « and S induce a homomorphism of complexes
C*(G,M)— C*(G'\M"), o+ Bogpoa"
and hence homomorphisms
H"(G,M)— H"(G',M")

Example 2. (a) Let H be a subgroup of G. For every H-module M, the map

o o(lg) : IndG (M) - M
is compatible with the inclusion H — G, and the induced homomorphism

H"(G,Ind%(M)) — H"(H, M)

is the isomorphism in Shapiro’s lemma.

(b) Let « be the inclusion H < G and let 8 be the identify map on a G-module M. In this

case we obtain the restriction homomorphisms
Res: H"(G,M) — H"(H, M)

They can also be constructed as follows: let M — Indfl(M ) be the homomorphism sending m to
the map g — gm, then the composition

H"(G,M) — H"(G,Ind%(M)) = H"(H, M)
is exactly the restriction map.

(¢c) Let H be a normal subgroup of G and « the quotient map G — G/H. Let 3 be the

inclusion M < M. In this case, we obtain the inflation homomorphisms

H"(G/H,M™) — H"(G, M)

(d)

(e) Let H be a subgroup of finite index of G, and let S be a set of left coset representatives
for H in G, G = (J,egsH. Let M be a G-module. For any m ¢ MY, Nmg/gm = Y oecs SM
is independent of the choice of S, and is fixed by G. Thus we actually obtain a homomorphism

Nmg /g : M H _y MC. This can be extended to a corestriction homomorphism
Cor: H"(H,M) — H"(G,M)
as follows: there is a canonical homomorphism of G-modules

© st(s_l) cIndGM — M
ses

and hence

H"(H,M) = H™(G,Ind$ M) — H" (G, M)

(©) F.P. (1800010614@pku.edu.cn) 8 2023.2
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Proposition 2.1.19. Let H be a subgroup of G of finite index. The composite
CoroRes: H'(G,M) — H" (G, M)

is multiplication by (G : H).

Corollary 2.1.20. If (G : 1) = m, then mH" (G, M) = 0 for all r > 0.

Corollary 2.1.21. If G is finite and M is finitely generated as an Abelian group, then H" (G, M)

is finite.

Proof. This is a finitely-generated group killed by |G|, thus, it is a finite group. |

Corollary 2.1.22. We call the p-primary component of a Abelian group A the subgroup consisting
of all elements killed by a power of p. Let G be a finite group and G, its Sylow p-subgroup. For

every G-module M, the restriction map
Res: H"(G,M) — H"(G,, M)
is injective on the p-primary component of H" (G, M).

Proposition 2.1.23. Let H be a normal subgroup of G, and let M be a G-module. Let r be a
positive integer. If H/(H, M) = 0 for all j with 0 < j < r, then the sequence

0— H"(G/H, M7y 2 gra, ) 2 57 (H, M)

is exact.

Proof. First we consider the case r = 1.

Obviously, the inflation map is an injection. For the second part, choose a ¢ € H'(G, M) with
o|lg = hmgo — mg. Define ¢'(g) = ¢(g) — (hmo — myg). Then ¢’ = ¢ in HY(G, M) and ¢'(H) = 0.

Now we prove that ¢ takes values in M. Recall that we have
¢'(hg) = h¢'(g9) + ¢'(h) = h¢/(9)

¢'(gh') = g¢' (W) + ¢'(9) = ¥'(g)
Since H is normal in G, we can make hg = gh'. Thus, h¢'(g) = ¢'(g)-
Now we prove by induction on r.

In fact, let M; = Ind{ (Mp)/M, where My here is M regarded as an Abelian group, we have
H™=Y(G,My) = H'(G, M)

Then we can reduce the case r to the case r — 1. [ |

Corollary 2.1.24. If Q O L are Galois extensions of K, then H = Gal(f2/L) is a normal subgroup
of G = Gal(Q2/K). Recall that H'(H,Q*) = 0, thus there is an exact sequence

0 — H*(G/H,L*) — H*(G,Q") — H*(H,Q")

(©) F.P. (1800010614@pku.edu.cn) 9 2023.2
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Proposition 2.1.25. There exists one and only one family of bi-additive pairings
(m,n) = mUn: H(G,M) x H(G,N) — H"*(G,M ® N)

defined for all G-modules M, N and all integers r,s > 0, satisfying the following conditions:

(a) these maps become morphisms of functors when the two sides are regarded as covariant
bifunctors on (M, N)

(b) for r = s = 0, the pairing is

(m,n)— Mon: MY @ NY — (Mo N)“

(¢)if 0 > M — M — M"” — 0 is an exact sequence of G-modules such that
0>MeN—->MN—->M &N —0

is exact, then
(dm"Yun=46(m"uUn), m"eH (G,M"), ne H(G,N)

Here ¢ denotes the connecting homomorphism H” (G, M") — H" (G, M") or H™*(G, M"®N) —
H™ (G, M @ N).

(d)if 0 = N' - N — N” — 0 is an exact sequence of G-modules such that
0>Me@N - M®N—-MaN'" —0
is exact, then
muUén” = (=1)"6(mun”), meH (G,M), n" € H*(G,N")
Proposition 2.1.26. (a) (zUy)Uz=2U (yU2)
(b) zUy = (=1)"yUx
(c) Res(z Uy) = Res(x) U Res(y)
(d) Cor(x UResy) = Cor(z)Uy
(e) Inf(x Uy) = Inf(x) U Inf(y).

2.2 Homology

Definition 2.2.1. For a G-module M, let Mg be the quotient of M by the subgroup I; generated
by {gm —m|g € G,m € M}.

Proposition 2.2.2. The functor M — Mg is right exact.

Proof. Assume that 0 — M’ 2 M & M”20 is exact.

If b € Ker(Mg — M), that is, ¢(b) € In. Note that ¢(In) = @(Ip), then o(b—1b') =0
for some b € Iy;. Then b — b € Ker(y) = Im(¢). Suppose ¢(a) = b — V. Thus a — b, i.e.,
Ker(Mg — M/.) = Im(M[}, - Mg).

For any ¢ € M, set ¢(b) = c. Then b~ ¢. Therefore, M}, — Mg — MJ, — 0 is exact. [ |
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Definition 2.2.3. Let M be a G-module, and choose a projective resolution
P2 gy By 0
of M. The homology group of
o (P B (P2 (Po)g— 0
is H" (G, M) = Ker(d,)/Im(d,1) is called the homology of M.
Proposition 2.2.4. (a) Ho(G,P) = Mg
(b) If P is a projective G-module, then H,(G, P) =0 for all » > 0.

Proposition 2.2.5. There is a canonical isomorphism

H(G,7) =G =G/[G, G

Proof. Define the augmentation map

Z|G] — Z, ang — an

Its kernel is called the augmentation ideal . Clearly I is a free Z-submodule of Z[G] with basis
{9—1lg € G,g # 1}, and so
M/IcM = Mg = Ho(G, M)

Consider the exact sequence
0—-Ic—ZG—7Z—0

Since the G-module Z[G] is projective, and so Hi(G,Z[G]) = 0. Therefore we obtain an exact
sequence

0— H\(G,Z) — Ig/13 — Z[G]/Ig — 7 — 0
Note that the middle map Ig/13 — Z[G]/Ig is zero, then we have
H\(G,Z) = I/ I3
and
Z|Gla = Z|G)/Ic = Z

Consider the map

G/|G,G] — Ig/1%, g+[G,G)w g—1+ I

this is well-defined since ab—1=a+b—2=ba —11in Ig/ Ig;. To show this is an isomorphism,

we may construct its converse. There is a natural homomorphism
Ie -+ G?% g—1mg+][G,G]

Then it is obvious that the generators of I%, (g — 1)(¢’ — 1) sends to 1. Therefore it induces the

inverse
Ig/I3 — G®

Hence
H((G,7) = G™
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2.3 The Tate group

Definition 2.3.1. For a G-module M, the norm map Nm¢g : M — M is defined to be

mHng

geG

We have Im(Nm¢g) € ME and IgM C Ker(Nmg). Therefore, the homomorphism
Nmg
M — M
induces a natural homomorphism
Ho(G, M) = M/IcM 2% HY(G, M) = M®
By computing its kernel and image we obtain an exact sequence
0 — Ker(Nmg)/IM — Ho(G, M) 22% HO(G, M) — M®/Nmg(M) — 0
Define the Tate cohomology group

H™(G,M), >0

MY /Nmg(M), r=0
Ker(Nmg)/IgM, r=-1
H_ ,_1(G,M), r<-1

H™(G,M) = H}(G, M) =

Thus the sequence above becomes

Nmg

0 — H:' (G, M) — Ho(G, M) —% H(G, M) — H}(G,M) — 0

Proposition 2.3.2. For any exact sequence of G-modules, we have a diagram

H;Y(G,M") — H;'(G,M) — H:*(G,M")

- — H1(G,M") — Hy(G,M') —— Ho(G,M) —— Hy(G,M") —— 0

Nmg Nmg Nmg

0 —— HO(G,M’) - HO(G,M) SN H0<G,M"> _ Hl(G,M/) .

HY(G,M') —— HY%(G,M) —— HX(G,M")

0 0 0

Note that the composition Hy(G, M) — Ho(G, M') — H°(G, M) is the zero map, then the image
of Hi(G, M) is contained in H;'(G, M’). By snake lemma we have a new diagram
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> Hl(G,M”) — HQ(G,M,) E— Ho(G, M) Ho(G, M”) — 0
Nmg mg Nmg
0 —— HYG, M) ‘‘G,M) —— H°(G,M") — HYG,M') — ---

/

HY(G, M') —— HY(G, M) —— HY%(G, M")

0 0 0
Thus we obtain a long exact sequence
= Hp(G,M') — Hp (G, M) — HR (G, M") — H7 Y (M) — -
Proposition 2.3.3. If M is induced, then H}.(G, M) =0 for all r € Z.

Proposition 2.3.4. The functors Cor, Res can be uniquely extended to the Tate groups. The

cup product can also extend uniquely.

Corollary 2.3.5. The Tate group H}.(G, M) is killed by |G| for all r.

Now we turn to the cohomology of finite cyclic group.

Lemma 2.3.6. For every finite group G
(a) H(G,Q) =0for all r € Z
(b) HY(G,Z) =7Z/(G : 1)Z and H(G,Z) =0
(c) there is a canonical isomorphism

Hom(G,Q/Z) = H*(G,Z)

Proof. (a) Since HF. is killed by |G|, and note that xm : H1.(G,Q) — 0 — H}.(G,Q) can also be
induced from the isomorphism xm : Q — Q, we have H! (G, Q) is exactly 0.

(b) We have H%(G,Z) = Z% = 7, and the norm map is multiplication by |G|. Hence
HY(G,Z) = Z/|G|Z. Moreover, H}.(G,Z) = Hom(G, Z) = 0.

(c) The exact sequence
0-Z—-Q—-Q/Z—0

induces that
0= H'(G,Q) - Hom(G,Q/Z) = H'(G,Q/Z) = H*(G,Z) - 0 = H*(G,Q)
Then the isomorphism follows immediately. |
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Proposition 2.3.7. Let G = (o) be a finite cyclic group. Then there is an isomorphism
Hy(G,M) = HIP(G, M)

Proof. There is an exact sequence

mHdec gm

07 Z[G) &5 7jG) 25 7 — 0

Since every term and kernel is a free module, then it remains exact as G-modules after tensoring
with M
0—>M—=ZG @, M —-ZGM—M—0

Since Z[G] ® M is just the induced module Ind%(M), H}(G,Z[G] ® M) = 0. Thus by splitting
the sequence into two short exact sequences and analyzing their induced long exact sequences we

have
HY(G,M) = H™ (G, M)

Definition 2.3.8. Let G be a finite cyclic group. If H"(G, M) are finite, defined the Herbrand

quotient of M to be
_ [HY(G, M)

M) = 1EN@, )

Lemma 2.3.9. Let 0 - Ag — A1 — --- — 0 be a exact sequence of finite group, then

|Aol|A2| -~ _
|A1[As] - -
Proof. Break it into short exact sequences. |

Proposition 2.3.10. Let 0 — M’ — M — M"” — 0 be an exact sequence of G-modules. If any
two of h(M"), h(M), h(M") are defined, then so is the third. Moreover,

h(M) = h(M')h(M")
Proof. We can construct a long exact sequence as
0— K — HY(M') — HY(M) — HY(M") — Hp(M') — Hp(M) — Hp(M") = K' — 0

where K = Coker(Hy ' (M) — H7'(M")) and K’ = Coker(HL(M) — HA(M")) = K. Then the

result follows from the lemma above. [ ]

Proposition 2.3.11. If M is a G-module with finite elements, then h(M) = 1.

Proof. There are two exact sequences
0 — Hp (M) — Mg 226 MS — HY(M) — 0
0—>MG—>M£>M—>M0—>O

where g is any generator of G. Then it can be checked that H, Land H% have the same order. W
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Corollary 2.3.12. Let a : M — N be a homomorphism of G-modules with finite kernel and
cokernel. If either A(M) or h(IN) is finite, then so is the other, and they are equal.

Now we can introduce the Tate’s theorem

Theorem 2.3.13. Let G be a finite group, and let M be a G-module. If
Hp(H,M) = 0= H}(H, M)

for all subgroups H of G, then H7.(G, M) = 0 for all r € Z.

Proof. If GG is cyclic, then it is obvious.
If GG is solvable, we shall prove this theorem by induction on the order of G.

Since G is solvable, it contains a normal subgroup H such that G/H is cyclic. By the inductive

hypothesis, H"(H,G) = 0 for all r. By 2.1.23 we have exact sequence for every r > 1
0— H"(G/H,M™") - H"(G,M) — H"(H, M)

and thus H"(G, M) = H"(G/H,M") =0 for all r > 1.

Next we show that HA(G,M) = 0. Let + € MY. Since HAX(G/H,M*) = 0, then every
element in M ¥ is in the image of ng/HMH. In particular, x = Nmg,yy for some y € M7,
By the inductive hypothesis, H%(H, M) = 0, there exists z € M such that Nmyz = y. Hence
Nmg(z) = 2. This implies that # € Nmg(M). Therefore, HY(G, M) = 0.

Recall the exact sequence
0—-Ic—Z[G—7Z—0

By tensoring M we have a new exact sequence
0— M —Ind(M)— M -0

Since the middle term is induced, Hy.(H, M) = H™ (H, M') for all r and all subgroups H C G.
In particular, M’ satisfies the assumption. By the inductive hypothesis and what we proved above,
H5.(G,M) =0 (r > —1). Repeat these operations, we obtain that H7.(G, M) = 0 for all r.

For the general case, G, is solvable for any prime p. Therefore, the result holds true for G. W

Theorem 2.3.14 (Tate). Let G be a finite group and let C' be a G-module. Suppose that for all
subgroups H of G

(a) HY(H,C) =0, and
(b) H2(H,C) is a cyclic group of order equal to (H : 1)
Then, for all r, there is an isomorphism

Hi(G,Z) = H;(G,C)

depending only on the choice of a generator of H2(G,C).
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Proof. Choose a generator v in H?(G,C). Since CoroRes = |G : H|, Res(7y) generates H?(H, C).

Let ¢ be a cocycle representing the class . Let C(¢) denote the free Abelian group @, ., Cxo+
C, where x, are free symbols for o # 1, and we define x; = ¢(1,1) € C.

Now we extend the action of G on C to C(y). Define
Oy = Tor — Ty + (0, T)

This action is well-defined.

Recall that
B*(G,C(¢)) = {¢: G* = C(¢)|¢(01,09) = 016(02) — ¢(0102) + $(01) for some ¢ : G — C(p)}
If we define ¢ as ¢(0) = x,, then ¢ : G2 — C — C(p) can be expressed as
o¢(o2) — (0102) + ¢(01)
Thus, v vanishes under the mapping

H%*(G,C) = H*(G,C(p))

We shall show that H'(H,C(y)) = H*(H,C(p)) = 0. Recall that we have an exact sequence
0—-Ig—ZGl—7Z—0
Since Z[G] is induced, we can obtain that
H}(H,Z[G)) = 0

for all r. Thus
H'(H,Ig) = Hy(H,Z) = Z/|H : 1|Z
H*(H,Ig) = H'(H,Z) =0

Define a: C(p) — Z[G] via
alc) =0, Vee C

alzg) =0 —1, Vo € G\{1}

Clearly,
0C—=Clp)SHZ—0

is an exact sequence of G-modules. Since H'(H,C) = 0, we have the following long exact sequence
1 1 2 Res(v)—0 2
0—H (H,C(p) - H (H,1Ig) - H*(H,C) ———— H*(H,C(p)) — 0

Considering that Res(vy) generates H2(H, C'), we can find that H?(H, C(yp)) is exactly zero.
Finally, by 2.3.13, all H}.(H,C(y)) are zero. Thus

H%(G7 Z) = ng_l(Gu IG) = H;’+2(G7 C)
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Remark 2.3.15. The map H}.(G,Z) — Hger(G, () is cup-product with the chosen element 7.

Definition 2.3.16. For a profinite group G and a discrete G-module M, let C7.(G, M) be the set
of continuous maps G" — M and define d" as before. We obtain some new cohomology groups

H"(G,M). If H runs through all the open normal subgroups of G, we have
H"(G,M) = lim H"(G/H, M)
H

If M = lim — M;, we have
H(G,M) = 1i_r>nH’”(G, M;)

3 Local Class Field Theory: Cohomology

3.1 The Cohomology of Unramified Extensions

Proposition 3.1.1. If L/K is a finite unramified extension of local field K, then the norm map

Nmy i : U — Uk is surjective.

Proof. Let U ém) =1+m} ={l1+an"|a € O}, where 7 is a prime element. Then the maps
urru (mod mp) : Uy — I

1+ ar™ +— a (mod mp) : Uém) — 1

induce the isomorphisms
UL Ut =0

U™ ot 2
By 2.1.15 we have H!(G,[*) = 0, and by 2.3.11 h(I*) = 1. Hence HX(G,I*) = H:(G,1*) = 0,

then HZ.(G,1*) = 0 holds for all r € Z. In particular, 0 = (I*)¢/Nmg(I*) = k*/Nmg(l*). Therefore

the norm map [* — k* is surjective.
By 2.1.17 we have H}(G,1) = 0 for all » € Z. In particular, the trace map | — k is surjective.

Now we go back to the norm map Nmy, /i : Uy — Ug. There are two commutative diagram

Uy —— I* um
‘/NmL/K ‘/le/k leL/K ‘/tr
Ug —— k* Ul —— k

For any u € U, suppose that v is the image of u in K*. Note that the map U — I* — k* is

surjective, then there exists an element w € Uy, such that w is the preimage of v in k*. Using the

(1)

commutation, it means Nmy /i (w) and u have the same image in k*. Hence u/Nmy i (w) € UK1 .

Proceeding these steps in the right diagram, we obtain a series of elements w, w1, -+ such that
w; € Ug) and u/Nm(wwy, -+ ,w,) € UI(?JFI). Then there exists an element v such that u/Nm(v) €
NUY = {1}, i.e., w is in the image of Nmy, : U — Ug. |
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Proposition 3.1.2. Let K be a local field. If L/K is a finite unramified extension with Galois
group G, then
Hp(G,Ur) =0, forallr

Proof. The above proposition implies that H%(G,UL) = 0. It remains to show that H+(G,UL) = 0.

Consider the exact sequence
0—-U,—~L"—-7Z—0

the induced long exact sequence is

0= Ux = K"—=7Z— HY(G,UL) =0
Hence H'(G,Up) = 0. [ |
Corollary 3.1.3. If L/ K is an infinite unramified extension with Galois group G, then H"(G,Ur) =
0 for all » > 0.

Definition 3.1.4. Now we have H"(G,Ur) = 0 for all unramified extension of K. Then the exact
sequence
0=U;,—=L"—=Z—=0

gives that
H*(G,L*) = H*(G,7)

Recall that H'(G,Q/Z) = H?(G,Z), then there is a natural map, called the invariant map,

defined by

f=f(Froby, )
-

Inv x : H*(G, L*) = H(G,Q/Z) = Homeontinuous (G, Q/Z) Q/Z

Theorem 3.1.5. There is an isomorphism
Inv geun /¢ H?*(Gal(K™/K), (K"™)*) - Q/Z

for every L C K of finite degree over k,

~

Invyp : H*(Gal(L/K), L*) =

1
|L : K|
Proposition 3.1.6. Let L be a finite extension of K of degree n, and let K" and L"" be the

largest unramified extensions of K and L. Then the following diagram commutes:

H?(Gal(K"™/K), (K"™)*) Res H?(Gal(L"™ /L), (L"™)*)

| |

Q/Z = Q/Z

Definition 3.1.7. Let L/K be a finite unramified extension. The local fundamental element is

1
the element of H?(G, L*) such that Uurp/ K = Invz/lK(m) By Tate theorem, up, /g defines an
isomorphism
Hp(G,Z) — Hyp(G, L")
Theorem 3.1.8 (Unramified case). Let r = —2, the isomorphism above turns to

G < K*/NmL*

it is exactly the map ¢r/k respectively in the local reciprocity law.
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3.2 The Cohomology of Ramified Extensions

Lemma 3.2.1. If L/K is a Galois extension with |L : K| = n, then H*(Gk, L*) contains a

1
subgroup canonically isomorphic to —Z/Z.
n

Proof. 2.1.23 and Hilbert theorem 90 tell us that there is an exact sequence

0= H*(Gp/k, L") = H*(Gyaygc, (K*)*) = H*(Gar s, (K*)¥)
Consider the diagram

1
0 —— EZ/Z _— H2(GKun/K7(Kun)*) — HQ(GLun/L, (L"™)*)

| bnf lmf

0 —— HQ(GL/KaL*) E— HQ(GKal/m(Kal)*) —fes HQ(GKal/Lv (L")
By 5-lemma the first vertical map is injective. |

Next we prove that H?(Gy/, L*) has order n.

Lemma 3.2.2. Let L be a finite Galois extension of K with Galois group G. Then there exists
an open subgroup V of Op, stable under G, such that H"(G, V) = 0 for all r > 0.

Proof. Let {z,} be a normal basis for L over K. Also, we require that they are in Op. Take
V => Ogx,. This is a stable subgroup under the action of G. Note that it contains 7™ for some
m, then it contains 7™ Op. Thus V is open since V is the union of cosets of 7™ Or. Finally, as
G-module, V = Og[G] = Ind®O. Therefore, H"(G,V) = 0 for all r > 0. [ ]

Lemma 3.2.3. Let L, K, G be as in the last lemma. Then there exists an open subgroup V of
Oj stable under G such that H"(G, V) = 0 for all » > 0.

Lemma 3.2.4. If L/K is a cyclic extension of degree n; then h(O}) = h(L*) = 1.

Proof. Let V be an open subgroup of O} with H"(G,V) = 0 for all r. Because O} is compact,
the quotient O /V is finite. Thus h(O;) = 1. Also h(L*) = h(O})h(Z) = n. [ |

Theorem 3.2.5. Let L be a finite Galois extension of K with |L : K| = n. Then H*(Gp k, L*)

has order n.

Proof. The ramification filtration gives us that the Galois group G is solvable. Thus we can
choose K’ such that L O K’ O K. Also there is an exact sequence

0— HQ(GK//K,KI*) — H2(GL/K,L*) — H2(GL/K/,L*)

Thus, by reduction on n we can conclude the result. |
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Theorem 3.2.6. For every local field K, there exists a canonical isomorphism
Invg : H*(G i, (K*)*) = Q/Z
From the same method from 3.2.1, we can obtain an isomorphism
2 * 1
Invy : HS(Gp /g, L") = —Z/Z
n

Proof. The diagram in the proof of 3.2.1 becomes

1
o——— EZ/Z - HQ(GKHH/K,(KHH)*) — HQ(GLun/L, (L"™)*)

& 2 ?

0 —— H2(GL/K7L*) E— H2(GK31/K7(K31)*) ﬂ) HQ(GKal/La (Lal)*)

But considering that HQ(GKal/K, (K®)*) is exactly the union of all H?(Gp g, L*) for any finite

Galois extension L/K, we have that the second vertical map is indeed an isomorphism. |

Definition 3.2.7. Let L be a finite Galois extension of K with Galois group G. We define the

fundamental class uy € H (e /K> L*) to be the element mapping to under Invy, k.

|L: K|

3.3 The Local Artin Map

Theorem 3.3.1 (general case). For any finite Galois extension of local fields L/K and r € Z, by

Tate theorem, the homomorphism
Hy(Gal(L/K),Z) — Hi?(Gal(L/K), L*)
is an isomorphism. When r = —2, it turns to be
G = K* [Ny (L)
We call its inverse map the local Artin map, denoted by ¢ k-

Proposition 3.3.2. The maps ¢, induce the map ¢x : K* — G = Gal(K*/K). This map

satisfies the conditions of the local reciprocity law.

Theorem 3.3.3 (Norm Limitation Theorem). Suppose L/K is a finite separable extension of

non-archimedean local fields and E/K is the maximal abelian sub-extension in L. Then,
Nmp, g (L") = Nmp/x (E7)

This theorem shows that there is no hope of classifying non-Abelian extensions of a local field in

terms of the norm groups.

Proof. If L/K is Galois, then Gal(E/K) = Gal(L/K)*. From the local Artin map we can

conclude a canonical isomorphism
K*/Nmp g (L") = K*/Nmp,(E")
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However, we know that Nm(L*) is a subgroup of Nm(E*), thus, they are equal.

In the general case, we assume that L’ is the minimal Galois extension of K containing L.
Let G = Gal(L'/K) and H = Gal(L’/L). The subgroup of G fixing E is G’ - H, where G’ is the
derived group of G. Let a € Nm(E™*), we have to show that a € Nm(L*). Consider the diagram

b
L 2 H/H

oo, |

b
K« —% G/¢

PE/K l

K* 225 /6 H

There exists b € L* such that ¢/ x(a) = ¢r//x(Nm(b)), and hence a/Nm(b) = Nm(c) for some
ce (L*)". Thus, a € Nmp, g (L*). [ ]

3.4 Hilbert Symbol

We will prove the following proposition

Proposition 3.4.1. Let K be a local field containing a primitive nth root of 1. Any element of

K* that is a norm from every cyclic extension of K of degree dividing n is an nth power.
Example 3. We introduce a special case that K = Qp and n = 2. For a,b € Qj, define
(a.b) 1 if 22 = az? + by? has a nontrivial solution in Q,
a =
P —1 otherwise

Clearly, (a,b), depends only a,b modulo squares, and so there is a pairing
a,b (a,b), - Qp/(Q)? x Qp/(Qp)* — {£1}

Also, one can verify that this pairing is bi-multiplicative, symmetric and non-degenerate.

Let a be a non-square in Q. Thus,

b is a norm from Q,[v/a] <= b= (z — Vaz)(z + Vaz) has a solution in Q,
— (a,b), =1

2

(Note: at this case, any y satisfying the equation ax? 4 by? = 22 cannot be zero.

Thus, if b is in Nm(Qp[/a]) for any a, then b is in (Q})2.

Definition 3.4.2. Now we define the Hilbert symbol in the general case.

From the sequence
0 = pn — (K™)* 2225 (gahyn 5 0

and the Hilbert 90 theorem, we can obtain that
HY (G ) = K*J(K*)", H*(G,pn) = HA(G, (KY)),
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where [],, represents the elements in [] killed by n.
Now we consider the cup-product
HY(G,Z/nZ) x HY(G, pp) — H*(G, i)
where I assume that G acts on Z/nZ trivially. Thus, the cup-product becomes
Hom(G,Z/nZ) x K*/(K*)" — H*(G, (K*)*),

For x € Hom(G,Z/nZ) and b € K*/(K*)", we write (x,b) for the image of the pair.

Let x be an element with order n, let L, be the subfield fixed by Ker(). Thus, it represents
an extension with Galois group G/Ker(y) = Z/nZ, that is, it is a cyclic extension of K.

Let b € K*, the local Artin map tells us that there is an isomorphism

~

K*/NmL} = H*(Z/nZ,L})

b— dxUb

The inflation map, which is injective, sends dx U b to (x,b). Thus, if (x,b) = 0 then (x,b)’ = 0,
through the isomorphism this indeed means that b € NmL7.

Considering that there is an isomorphism
Invg : H*(G, (K**) = Q/Z

then there is a pairing
1
the set of (x,b) — —Z/Z
n

We can verify that the left kernel of this pairing is zero.

Now we assume that K is a local field containing the nth root of 1. Thus, pu, = Z/nZ as

G-modules. Then we have a cup-product pairing
HY(G, ) % HY(G, ) = HA(G, pin @ 1)

which is exactly
K7J(K7)" < K7/ (K7)" =

This pairing is called the Hilbert symbol.

Theorem 3.4.3. This pairing has the following properties
1. It is bi-multiplicative.
2. Tt is skew-symmetric, i.e., (b,a) = (a,b)" L.
3. It is non-degenerate.

4. (a,b) =1 if and only if b is a norm from K|[/a].
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3.5 The existence theorem

Theorem 3.5.1. A subgroup N of K* is a norm group if there is a finite Abelian extension L/K

such that Nmp, /i (L*) = N. Then, every norm open subgroup of finite index in K* is a norm

group.
Proof. Step 1. For all finite extensions L/K, the norm map L* — K* has closed image and
compact kernel.

By 1.1.9, the image is open and closed. For the kernel, it is closed in OF, thus is compact.

Step 2. Let D = ﬂL/K finite Nz /i (L*). For any finite extension K'/K, Nmys g Dgr =
Dg.

Let a € Dk, and consider the sets

Nmy, /g (L*) N Nm;(}/K(a)

for L/K’ finite. These sets are compact and non-empty, and the intersection of any two of them
contains the third one. Thus, the intersection of all of them is non-empty. That means, Nmp

is surjective over D.

Step 3. The group Dy is divisible.

Let n > 1 be an integer. We want to show that D} = Dg. Let a € Dg. For each finite
extension L of K containing a primitive nth root of 1, consider the set

E(L)={be K*b" =a, beNmy (L")}

From step 2 we know that a = Nmy,, xa' for some a’ € Dy. From the Hilbert symbol theorem we
know that a’ is indeed a nth power, said a’ = ¢ for ¢ € L*. Thus, a = Nm(c)". As a result, F(L)

is non-empty. Moreover, it is easy to see that
E(L)YNE(L) D E(L-L

Also, note that E(L) is a finite set. Thus, the intersection of all F(L) is non-empty.
Step 4. Every subgroup I of finite index containing O} is a norm subgroup.

The group I is just like ord;(l (nZ). Let K, be the unramified extension of K of degree n.
Then Nmg, /x(K},) is a subgroup of K* containing Uy with image nZ. Thus, it is exactly I.

Step 5. The original theorem.

Let \V be the set of all norm groups in K*, so that Dg = [\yep V. Let I be a subgroup of
K* of finite index. Because D is divisible, I 2 Dg. Thus, I D (ycpn(IV N OF). Because these

sets are compact, and any two of them contains the third one, I 2 N N O} for a certain N.
Now the group O} - (N N I) is a subgroup of finite index in K* containing OF, which is a
norm group. Now N N (Uk - (N N 1)), is an intersection of two norm groups, and thus contains a

norm group. We can check easily that I contains this intersection, then it contains a norm group.

Then I is a norm group. |
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4 Brauer Groups

4.1 Simple algebras; semisimple modules
Definition 4.1.1. A k-algebra is a ring A containing k in its center and finite dimensional as
a k-vector space. A k-subalgebra of a k-algebra is a subring containing k.
A homomorphism ¢ : A — B of k-algebras is a homomorphism of rings with the property that

p(a) =a for all a € k.

Now we write A for a k-algebra.

Definition 4.1.2. By an A-module, we mean a finitely generated left A-module V.

An A-module is simple if it is nonzero and contains contains no proper A-submodule except 0,
and it is semi-simple if it is isomorphic to a direct sum of simple A-modules. It is in-decomposable

if it can not be written as a direct sum of two non-zero A-modules.
Every semi-simple A-module V' can be written as a direct sum
VEmS & &mS,
with each .S; simple and no two isomorphic. An A-module is said to be isotypic if r < 2.

Proposition 4.1.3. Let V be a semi-simple A-module. A submodule of V is stable under all

endomorphisms of V' if and only if it is a sum of isotypic components of V.
Definition 4.1.4. A k-algebra A is said to be semi-simple if every A-module is semi-simple.

Proposition 4.1.5. Let A be a semi-simple k-algebra. The isotypic components of the A-module

4A are the minimal two-sided ideas of A.

Definition 4.1.6. A k-algebra A is said to be simple if it contains no proper two-sided ideals
other than 0.

A k-algebra A is said to be a division algebra if every nonzero element a of A has an inverse.
Note that a division algebra is almost a field except the commutativity. It also have the similar
properties with fields, like a division algebra has no nonzero proper ideals, left, right, or two-sided,

and so is simple.

Much of linear algebra does not require that the field be commutative. For example, we can

define the dimension for a finite generated module V over a division algebra D.

Example 4. For (a,b) € k*, let H(a,b) be the k-algebra with basis 1,4, j,ij (as a k-vector space)

and with the multiplication determined by

Then H(a,b) is a k-algebra, called a quaternion algebra over k.

Definition 4.1.7. Let A be a k-subalgebra of a k-algebra B. The centralizer of A in B is

Cp(A) ={be Blba =ab for all a € A}
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Theorem 4.1.8 (Double centralizer theorem). Let A be a k-algebra, and let V' be a faithful
semi-simple A-module. Then C(C(A)) = A (centralizers taken in Endg(V)).

Proof. Let D = Cgpng,v)(4), and B = Cgpq,(v)(D). Clearly, every a € A commutes with D.

Thus, A C B. The following lemma gives us that A D B. [ |
Lemma 4.1.9. For any vy, -+ ,v, € V and b € B, there exists an a € A such that
avi = bvy, avy = bug,--- ,av, = buy,

Lemma 4.1.10 (Schur’s lemma). The endomorphism algebra of a simple A-module is a division

algebra.

Proof. The linear map between S, which is a simple A-module, is either 0 or a bijection. |

Theorem 4.1.11. Every simple k-algebra A is isomorphic to M, (D) for some n and some division
k-algebra D.

Proof. Choose a simple A-module S. Since the kernel of A — End(S) will be a two-sided ideal
of A, the action of A on S is indeed faithfully.

Let D be the centralizer of A in the k-algebra Endj(S) of k-linear maps S — S. We know
that A = Cgna,(s)(D). That is, D = End4(S). Thus, Schur’s lemma tells us that D is a division
algebra. Therefore, S is a free D-module. Thus, A = Endp(S) = M, (D°P). [ |

Corollary 4.1.12. Simple k-algebras are semi-simple.

Theorem 4.1.13. Let A be a semi-simple k-algebra. The following conditions on A are equivalent:

1. A is simple
2. the A-module 4 A is isotypic
3. any two simple A-modules are isomorphic.

Corollary 4.1.14. Let A be a simple A-modules. Any two minimal left ideals of A are isomorphic

as left A-modules, and A is a direct sum of its minimal left ideals.

Corollary 4.1.15. Let A be a simple A, and let S be a simple A-module. Every A-module is
isomorphic to a direct sum of copies of S. Any two A-modules having the same dimension over k

are isomorphic.

4.2 Definition of the Brauer Group

Proposition 4.2.1. Let A, A’ be k-algebras, with sub-algebras B and B’. Let C(B) and C(B’)
be the centralizers of B and B’ in A and A’ separately. Then the centralizer of B®j B’ in A®; A’
is C(B) ®, C(B').

Corollary 4.2.2. The centre of a simple k-algebra is a field.

(©) F.P. (1800010614@pku.edu.cn) 25 2023.2



A KGR G HE BT
School of Mathematical Sciences Capital Normal University 4'2 Deﬁl’lltion Of the Brauer Group

Proof. We have
Z(Mn(D)) = Z(k @ Z(D)) = Z(k) @ Z(D) = Z(D)

Obviously, the centre of a division algebra is a field. |
Definition 4.2.3. A k-algebra is said to be centre if its centre is k.

Definition 4.2.4. Let V be a k-vector space, possibly infinite dimensional. Let (e;);c; be a basis

for V. Any v € V' can be written uniquely v > a;e;, and we write
J(v) = {i € I|a; # 0}

it is a finite subset of I, which is empty if and only if v = 0.

Let W be a subspace of V. A nonzero element w € W is called primordial if at least one a; = 1

and #J (W) = min{J(vw’)|w" € W}.

Proposition 4.2.5. (a) Let w be a nonzero element of W such that J(w) is minimal, and let w’

be a second nonzero element of W. Then J(w') C J(w) if and only if v’ = cw.
(b) The set of primordial elements of W spans it.
Proposition 4.2.6. The tensor product of two central simple k-algebras is again central simple.

Theorem 4.2.7 (Skolem,Noether). Let f,g : A — B be homomorphism from a k-algebra to a
k-algebra B. If A is simple and B is central simple, then there exists an invertible element b € B
such that f(a) =b-g(a) -b~! for all a € A.

Corollary 4.2.8. Let A be a central simple algebra over k, and let By and Bs be simple k-sub-
algebras of A. Any isomorphism f : B; — Bs is induced by an inner automorphism of A, i.e.,
there exists an invertible a € A such that f(b) = aba™! for all b € B;.

Definition 4.2.9. Let A and B be central simple algebras over k. We say that A and B are
similar, A ~ B, if A ®y M, (k) = B &k M,,(k). Define Br(k) to be the set of similarity classes of

central simple algebras over k. It is an Abelian group.

Note that A — A ®; K builds a homomorphism
Br(k) — Br(K)
its kernel is denoted by Br(K/k). An element in Br(K/k) is said to have a splitting field K.

Proposition 4.2.10. Note that A = M, (D) for some central division algebra D. As a result,

each similarity is represented by a central division algebra.
Example 5. If k is algebraically closed, then Br(k) = 0.

Proposition 4.2.11. Let A be a central simple algebra over k, and let K be a field extension
containing k. Then A ®; K is a central simple algebra over K.

Corollary 4.2.12. For a central simple algebra A over k, [A : k] is a square.

Proposition 4.2.13. For any field &k, Br(k) = |JBr(K/k), where K runs over the finite extensions

of k contained in some fixed algebraic closure.
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4.3 The Brauer group and cohomology

We will prove that there is an isomorphism
H*(Gal(L/K),L*) = Br(L/K)
for any Galois extension L/K.

Theorem 4.3.1 (Another version of double centralizer theorem). Let B be a simple k-subalgebra
of a central simple k-algebra A. Then the centralizer C = C(B) of B in A is simple, and B is the
centralizer of C'. Moreover,

[B:K]|[C: k] =[A: kK]

Corollary 4.3.2. If in the statement of the theorem, B has center k, then so does C. The
canonical homomorphism

Be,C— A

is an isomorphism.

Corollary 4.3.3. Let A be a central simple algebra over k, and let L be a subfield of A containing

k. The following are equivalent:

1. L equals its centralizer in A.
2. [A: k] =[L: k]
3. L is a maximal commutative k-subalgebra of A.

Corollary 4.3.4. The maximal subfields containing & of a central division k-algebra D are exactly

those with degree \/[D : k] over k.

Corollary 4.3.5. Let A be a central simple algebra over k. A field L of finite degree over k spits

A if and only if there exists an algebra B similar to A containing L and such that
[B:k]=[L:k?
In particular, every subfield L of A of degree [A : k]l/ 2 over k splits A.

Corollary 4.3.6. Let D be a central division algebra of degree n? over k, and let L be a field of
degree n over k. Then L splits D if and only if L can be embedded in D.

Proposition 4.3.7. Every central division algebra over k contains a maximal subfield separable

over k.

Corollary 4.3.8. The Brauer group Br(k) = |JBr(L/k), where L/K runs over the finite exten-

sions of k contained in a fixed separable closure of k.

Define A(L/K) to be the class if central simple algebras A containing L and of degree [A :
k] = [L: k)%

Fix an A € A(L/K). Recall that there exists an element e, € A such that

oa = eyae; !, Ya € L
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Through o7a = o(Ta) we can conclude that
emae;Tl = egeTaeT_legl

Thus, eyer = p(0,T)eqr for some ¢ € L*.

One can verify that this defines a 2-cocycle. Thus, we have a well-defined map
A y(A): A(L/K) — H*(Gal(L/K), L*)
Theorem 4.3.9. The map ~ is surjective, and its fibres are the isomorphism classes.

Theorem 4.3.10. For every finite Galois extension L/K, there is an isomorphism of Abelian
groups
H*(Gal(L/K),L*) — Br(L/K)

Corollary 4.3.11. For every separable algebraic closure K2 of K, there is a canonical isomor-

phism Br(K) — HQ(GalKal/K, (K1)

4.4 The Brauer groups of special fields

Theorem 4.4.1. For finite fields K, Br(k) = H2(Ga1Kal/K, (K*)*) = 0.
Theorem 4.4.2. Finite division algebras are commutative.

Theorem 4.4.3. If K is a local field, every element of Br(K) is split by an unramified extension.
Thus Br(K) = Br(K"/K).

5 Global Class Field Theory: Statements of the Main Theorems

5.1 Ray Class Groups

Let K be a number field and I the group of all fractional ideals of K. For any a € K, let a, or a;
be the image of a in K, or K,.

Lemma 5.1.1. For any finite set S of primes of K, let I° be the subgroup of I which is generated
by the prime ideals not in .S. Let

K% ={ac K*|(a) € I°} = {a € K*|ordy(a) = 0 for all p € S}

Let ¢ : K* — I be the map sending a to the fractional ideal aO7.

Then there is an exact sequence
OHO?(HKSQIS%C:I/Z'(K*)%O

Proof. To show I° — C is surjective, it suffices to show that for any equivalent class in C, it can

be represented by an element in I°. We can reduce this question to the integral ideal case. For
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integral ideal a € I°, we may write a = Hpes p™b, where b € I°. Choose a mp € p such that

ordy(mp) = 1, then there exists an element a such that
_ 1
a = m,*(mod p™*)

for all p € S. Then (a) = [[,cqp"*b’, where b’ € I5. Now a~'a € I°. Since (a) — 0, a"'a is sent
to a. |

Definition 5.1.2. A modulus for K is a function
m : {primes of K} — 7Z

such that
(1) m(p) > 0 for all prime p and m(p) = 0 for all but finite prime ideals p.
(2) if p is real, then m(p) =0 or 1.
(3) if p is complex, then m(p) = 0.

Let m = Hp p™®) = m o m formally be the ideal corresponding to m, where my is the product
of real primes. Let S(m) be the set of all primes dividing m.

Definition 5.1.3. For a modulus m, define K, ; to be the set of a € K* such that
ordp(a — 1) > m(p) all finite p dividing m
ap >0 all real p dividing m

Note that for every a € Ky and prime ideal p dividing m, ord,(a) = 0. Hence there is a natural
inclusion K1 — I°(™ sending a to (a). The quotient Cy = I°(™ /i(Ky1) is called the (ray)

class group modulo m.

Lemma 5.1.4. Let S be a finite set of prime ideals of K. Then every element o € K*° can be
written as a = a/b with a,b € O N K.

Proposition 5.1.5. Every class in Cy, is represented by an integral ideal a, and two integral ideals
a and b represent the same class if and only if there exist nonzero a,b € Ok such that aa = bb
and

a =b = 1(mod mg)
a and b have the same sign for every real prime dividing m
Proof. Suppose that the class is represented by a € I°™ let a = be~! with b and ¢ integral ideals
in 15(m), By Chinese remainder theorem there exists a nonzero ideal in ¢ € ¢ N Ky 1, and the

strong approximation theorem shows that ¢ can be chosen to be > 0 at the real primes. Now ca

is integral and represents the same class with a. |
Theorem 5.1.6. For every modulus m there is an exact sequence
0= OOk NEKn1 — K™ /K1 = Cp— C =0

and canonical isomorphisms

ES™W/Kei= I {2} x I1 Ok /pm®yr = I {F} x (O /mp)”

p real and pjm p finite and pjm p real and pjm
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Therefore Cy, is a finite group of order

* * — T 1
hm =h- (OK : OK N Km71) 12 0N(m0)pl1 (1 — Np)
mo

where rg is the number of real primes dividing m and h = |C] is the class number.

Proof. The exactness of the sequence follows from 5.1.1. The second statement follows from the

Chinese remainder theorem. |

5.2 L-series and the Density of Primes in Arithmetic Progressions
5.3 The Main Theorems in Terms of Ideals

Definition 5.3.1. Let L/K be a finite Abelian extension with the Galois group G. For every

finite set S of primes of K containing all primes that ramify in L, we have a homomorphism
U 1% = Gal(L/K), ][~ J]Froby:
called the global Artin map (or reciprocity map).

Proposition 5.3.2. Let L be an Abelian extension of K, and let K’ be an intermediate field:
L D K' O K. Then the following diagram commutes:

3\ ’
15, =5 Gal(L/K')

le 1
g Y/
15 5 Gal(L/K)
Corollary 5.3.3. Let K’ = L, then Nm(I7) C Ker(¥p k). Thus the Artin map induces a

homomorphism

Yri In/Nm(IR) — Gal(L/K)
if L/K is a finite Abelian extension.

Definition 5.3.4. Let S be a finite set of primes of K. We say a homomorphism ¥ : [¥ — G
admits a modulus if there exists a modulus m with S(m) D S such that ¥(i(Ky 1)) = 0. Thus ¥
admits a modulus if and only if it factors through Cy, for some m with S(m) 2 S.

Theorem 5.3.5 (Reciprocity Law). Let L be a finite Abelian extension of K, and let S be the
set of primes of K ramifying in L. Then the Artin map ¥ : I® — Gal(L/K) admits a modulus m
with S(m) = 5, and it defines an isomorphism

1™ Ji( K1) - Nm(17™) = Gal(L/K)
A modulus as in the statement of the theorem is called a defining modulus for L.
Definition 5.3.6. We call that a subgroup H of I} = Ils{(m) is a congruence subgroup modulo m
if
Ig D H D i(Kn)
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Theorem 5.3.7 (Existence theorem). For every congruence subgroup H modulo m, there exists

a finite Abelian extension L/K unramified at the primes not dividing m such that H = i(Kny 1) -

Remark 5.3.8. Given a finite Abelian extension L]/K, then the reciprocity law tells us that the
Artin map U : IS — Gal(L/K) admits a modulus m such that

Sm) =5, i(Km1)-Nm(I;™) = Ker(¥)
In other word, there is an isomorphism
Cp = I°™ /H — Gal(L/K)

The existing theorem tells us that L is highly connected with m, thus, we often note this L, called
the ray class field modulo m, as Ly. For any field L C Ly, set

Nm(Cpm) = i(Km 1) - Nm(I})

The ezisting theorem infers that the map L — Nm(CT ) induces a bijection from the set of Abelian

extensions of K contained in Ly and the set of subgroups of Cy,.

Corollary 5.3.9. For every number field K, there is an isomorphism
lim Cp, — Gal(K*?/K)
%

Corollary 5.3.10. Let H = i(Ky,1), then for any modulus m there is a field Ly, called the ray

class field modulo m, such that there is an isomorphism
Cn — Gal(Ly/K)

Moreover, for any field K C L C Ly, define Nm(Cp, ) = Nm(I}') € Cy. Then the correspondence
L — Nm(Cp ) is a bijection between the set of Abelian extensions of K contained in Ly and the

set of subgroups of Cy,. And
Ly C Ly <= Nm(Cp, ) 2 Nm(CpL,m)
Nm(Cp, -Lom) = Nm(Cp;m) N Nm(Crym)
Nm(Cr,nrem) = Nm(Cp,m) - Nm(Crym)

Definition 5.3.11. Let L/K be an Abelian extension with Galois group G. By the reciprocity
law there is a modulus m, with S = S(m)= the set of primes of K ramifying in L, such that the
Artin map

Uy I° =G

has the kernel i(Kp 1) - Nm(IE(m)).
Recall that there is an exact sequence
(O /o) = K Koy 5 Co =5 G
there must be a smallest integer f(p) < m(p) such that the map factors as
(Ok /™))" = (Ok [p!P)" = G
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Thus the modulus f(L/K) = my [[pf® is then the smallest modulus such that ¥ /K factors
through Cj, it is called the conductor of L/K. The condutor is divisible exactly by the prime

ramifying in L.

The subfields of the ray class field Ly, containing K are those with conductor flm. Every

Abelian extension of K is contained in L, for some m.

Theorem 5.3.12 (Norm Limitation Theorem). Let L be a finite extension of K, and let L’ be a

maximal Abelian subextension. For every defining modulus m for L’

i )N g (5™ = (K )N g (15

5.4 Ideles

Definition 5.4.1. Define the group of ideles to be
I=1x ={(ay) € HK;]av € O;, for all but finitely many v}
where O, = the ring of integers in K.
For every finite set S of primes that includes all infinite primes, let

Is =[] &: x [[ o;

veES vgS

with the product topology. It is locally compact since the first factor is locally compact and the
second factor is compact (by Tychonoff theorem). Note that

I=|JIs

Now we endow I a new topology, which is generated by the basis of open sets

{H V, : V, is open in K, and V,, = O}, for all but finitely many v}

v

This topology makes every g open and inherits the product topology. Moreover, it makes I to be
a topological group. The following sets form a fundamental system of neighborhood of 1: for each
finite set of primes S O S, and € > 0, define

U(S,e) ={(ay) : |ay — 1|y <€, for v e S, |ay|, =1, for v ¢ S}

There is a canonical surjective homomorphism

id : (ay) — H pgrdp”(a”) (g — I
v finite

whose kernel is Ig_ .

Proposition 5.4.2. There is a canonical injective homomorphism
a— (a,a, ) K* = Ik

The image of this homomorphism is discrete.
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Proof. 1t suffices to show that the restriction of the topology on the image makes the single point

set {1} open.

Let U = U(S,¢e) 51 with Soo € S and € < 1. For (a,a,---) € U and v ¢ S, |a|, = 1. Hence
la —1], <1 for v ¢ S. Thus we have [] |a — 1|, < €/®l] this contradicts the product formula unless
a=1. ]

Definition 5.4.3. If we identify K* with its image in [, we may define the idele class group of
K to be the quotient C = I/K*.

Definition 5.4.4. There is a canonical surjective homomorphism

c: (ay) &—>H|av|v:]l—>R>0

The image is called the content of (a,). Define I' = Ker(c). Obviously K* C I'. The quotient

I/K* can not be compact since c is surjective, but I'/K* is compact.
Definition 5.4.5. Let m be a modulus. For p|m, set

Rsg, P real

Wa(p) =
m(p) {1+ﬁm(p), p finite

which is obviously a neighborhood of 1 in K. Note that when p is finite, Win(p) C Oj.

Define I, to be the set of ideles (ap), such that a, € Wi (p) for all pjm:
I, = HK; X HWm(p) NI
pfm plm
Define Wi, to be the set of ideles (ayp), in I, such that ay is a unit for for all finite p not dividing

Wi = 11 Ky x [ Walp) x 11 o;

pNmidm, p infinite plm pNmidm, p finite

Note that Km,1 = K*N][,jm Wi(p) = K NIy (recall that K* can be identified as the diagonal
in ).

Proposition 5.4.6. Let m be a modulus of K.

(a) The map id : I, — I°™) defines an isomorphism
I/ K1 - Wi = Cn
(b) The inclusion I, < I defines an isomorphism
/K1 — I/K*

Proof. (a) Obviously Ky.1 is contained in the kernel of I, — I Sm) _y C4. Thus there is a
homomorphism
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Recall that Ig_ NI, = Wy, is the kernel of id, hence the homomorphism
In/Km1 - Wm = Cn

is an isomorphism.

(2) The kernel of I, — I/K* is K* NIy = Kn1. The surjectivity follows from the weak

approximation theorem. |

Proposition 5.4.7. Let S O S, be a finite set of primes and G an Abelian group. If ¢ : IS — G

admits a modulus with S = S(m), then there exists a unique homomorphism ¢ : T — G such that
(a) ¢ is continuous (G with the discrete topology).
(b) G(K*) = 1.
(c) ¢(a) = ¢ (id(a)), for all a € I¥ £ {a € I|a, = 1 for all v € S}

Proof. There is a diagram

m Cn G
Hm/Km,l E— Hm/Km,IWm
I —— I/K*
Define ¢ to be the composite I — G. |

Remark 5.4.8. The canonical homomorphism my : 1 — Cy is the unique homomorphism satisfy-
mg

(a) mm(K*) = 1.

(b) mn(a) = id(a) for all a € T5(™),

If m|m/, then my is precisely the map composing Ty, and Cy — Cn. Therefore, there is a

continuous homomorphism 7 : 1 — lim,. Cy. This map is actually surjective.

Definition 5.4.9. Let L be a finite extension of K, let v be a prime of K. Recall that

L®KKU%HLH,

wlv

then we may define

Nmp g I = Ik (aw) = (bo) = (H Nmy,, /K, @w)

wlv
Proposition 5.4.10. There is a commutative diagram:
Lr Iy, 1y,
JNmL/K \LNmL/K leL/K
K* Ik Ik
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5.5 The Main Theorem in Terms of Ideles

Lemma 5.5.1. Let L be a finite Abelian extension of K, let v be a prime of K and w one
extension. Denote by D(w) the decomposition group, which is isomorphic to Gal(L,,/K,). The

local class field theory tells us there is a homomorphism
¢ K — D(w) CG
Moreover, we have that the subgroup D(w) and ¢, are independent of the choice of w.

Proposition 5.5.2. There exists a unique continuous homomorphism ¢ :: I — Gal(K?®?/K)
with the following property: for any L C K®P finite over K and any prime w of L lying over a

prime v of K, the diagram

Kr —2 Gal(Ly/Ky)

|

I 2 N Gal(L )/ K)
comimutes.

Proof. We may define
¢k Ik = Gal(L/K) av [ év(an)

and ¢ is the inverse limit. [ |

Theorem 5.5.3 (Reciprocity Law). The homomorphism ¢ : Ix — Gal(K?"/K) has the follow-

ing properties:

(a) o (K*) =1

(b) for every finite Abelian extension L of K, ¢ defines an isomorphism

¢r/k I /(K" - Nm(IL)) — Gal(L/K)

(b)” ¢k defines an isomorphism
¢L/K : CK/NH](CL) — Gal(L/K)

Theorem 5.5.4 (Existence Theorem). Fix an algebraic closure K2 of K; for every open subgroup
N C C of finite index, there exists a unique Abelian extension L of K contained in K?! such that
NmL/KCL = N.

Definition 5.5.5. A subgroup of Cx is a norm group if it is of the form Nm(Cy) for some finite
Abelian extension L of K, L is called the class field of K belonging to N.
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6 L-series and the Density of Primes

6.1 Dirichlet series and Euler products

Definition 6.1.1. A Dirichlet series is a series of the form

f(s)zza(n) a(n) €C,s=c+ite€C

n>1

An Euler product belonging to a number field K is a product of the form

1

= a=mmaammy "0 s <C

in which p runs over all but finitely many of the prime ideals of O

6.2 Convergence Results

Proposition 6.2.1. Let

n>1
Write S(z) = >, ., a(n), and suppose that there exists positive constants a and b such that

|S(2)| < ax® for all large 2. Then the series f(s) converges uniformly for s in

D(b,d,e) ={R(s) > b+, |arg(s—b) < - —¢}

ﬁ
2
for all §,e > 0, and it converges to an analytic function on the half plane JR(s) > b.

Lemma 6.2.2. The zeta function ((s) has an analytic continuation to a meromorphism function

on R(s) > 0 with its only (possible) pole at s = 1.

Lemma 6.2.3. For s real and s > 1,

1
< <1
s—l_C(s)_ +s—1

Hence ((s) has a simple pole at s = 1 with residue 1, i.e.,

1
C(s) = 0 + holomorphic function near 1
S —

Proposition 6.2.4. Let f(s) be a Dirichlet series for which there exist real constants C' and b,

b < 1, such that

1S(n) — agn| < en®
Then f(s) extends to a meromorphic function on 2(s) > b with a simple pole at s = 1 with
residue ayg, i.e., near s = 1

f(s) = 0 : + holomorphic function
s —

near s = 1.
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Proposition 6.2.5. Let x be a Dirichlet character of a number field K. For all s with %(s) > 1,

the Euler product [, . converges to L(s, x).
X

— x(p)Np~*
Definition 6.2.6. Let K be a number field, let m be a modulus. For every class [ in Cy, =
I™/i(Kn,), we define the partial zeta function

0= Y w

a>0,a€l
Note that
L(s,x) = > x(D¢(s,1)
[€Cnm
Cel(s) = 3 ¢(s.)
[€Cm

Let S(z,l) = [{a € l|a integral Na < z}|.

1
Theorem 6.2.7. The partial zeta function is analytic for R(s) > 1 — p except a simple hole at

s=1.

6.3 Density of the Prime Ideals Splitting in an Extension

1
Definition 6.3.1. For a set of prime ideals of K, we define (x7(s) = [[,er TN If some

positive integral power (i 7(s)" of (x 7(s) extends to a meromorphic function on a neighborhood

of 1 having a pole of order m at 1, then we say that T has polar density §(7) = m
n
Proposition 6.3.2. (a) The set of all prime ideals of K has polar density 1.
(b) The polar density of every set (having one) is > 0.

(c) Suppose that T' is the disjoint union of 77 and 7. If any two of T', T, T» have polar
densities, then so also does the third, and §(T) = §(71) + 6(T2).

(d) T C T, then §(T) < 6(T") (when both are defined).
(e) A finite set has density 0.
Proposition 6.3.3. If T' contains no primes for which Np is a prime, then §(7") = 0.

Corollary 6.3.4. Let 77 and 715 be sets of prime ideals in K. If the sets differ only by primes for
which Np is not prime, also we assume that one of them has a polar density, then the other one

has the same polar density.

Theorem 6.3.5. Let L be a finite extension of K, and let M be its Galois closure. Then the set

1
of prime ideals of K that splits completely in L has density K|

6.4 Density of the Prime Ideals in an Arithmetic Progression

We omit some basic knowledge of Dirichlet density.

The key result is
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Theorem 6.4.1. Let m be a modulus for K, and let H be a congruence subgroup for m:
I DO H D i(Kma)

Then

if L(1,x) is nonzero for all characters x # xo of Is(m)/H;

5({p € H}) = (I5m) . {H)’
0, otherwise

Theorem 6.4.2. For every Galois extension L/K and modulus m of K,

( 7S (m)i(K,1)Nm(I} (’">))

7 Global Class Field Theory: Proofs of the Main Theorems

7.1 Outline

Note that we have constructed a homomorphism

We will verify the properties. We will first express the cohomology groups
HY(G,1p) =1k

H'(G,1L) = D HF(G", (L")

Then, we will prove the following propositions

for any cyclic extension L/K, (Cx : Nmp /xCr) > [L : K]

Also, we will prove the second inequality

Theorem 7.1.1. For every Galois extension L/K of number fields,

1. (Ckx : Nmp xCpr) < [L: KJ;
2. HY(G,Cp) =1,

3. H*(G,Cyr) has order < [L: K].

7.2 The Cohomology of Ideles

Lemma 7.2.1. Let L/K be a finite Galois extension of number fields with Galois group G. Let

v be a prime of K, then G acts on the set of the primes w of L which satisfy w]|v.

Given a wolv. Let Gy, be its decomposition group. For a € [[,, Lw and o € G, define

falo) = o(a(c™ wp)). Then f, € Indng(LwO)7 and the map

wlv

@ fo: [[ Lo — MdG, (Lu)

wlv
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is an isomorphism of G-modules. Similar statements hold with L,, replaced with L} and with
o7 .

Corollary 7.2.2. By Shapiro lemma, for all r,
"G T L) = H (Guy,s L)
wlv

Remark 7.2.3. The group H"(Guw,, L},) is independent of the choice of wo up to a canonical

isomorphism. From now on we may set

G' =Gy, L'=L, U =0;

w

Proposition 7.2.4. For all » > 0,

Hip(G, 1) = @ Hp (G, L™)

Proof. Let I, g = HveS(Hw|v L) x Hv¢s(Hw|v O3.)- Thus I, is the direct union of all I, s and
then

H'(G,I1) = lim H"(G,Ir,5) = lim M@ 1] < [[a @[]

veS wlv vgS wlv

The right hand is equal to [[, H"(G", L"*) by the corollary above. [ |
Corollary 7.2.5. (a) H(G,1.) = 0.
1
(b) H*(G,1L) 2 @, (—7Z/Z), where n, = [L° : K,].
Ty
Lemma 7.2.6. If L/K is a finite cyclic extension of local fields, then h(O}) =1 and h(L*) = [L :
Proof. From the exact sequence
0-0; =>L"—-7Z—0
we can know that h(L*) = h(Z) - h(O}).
From the general local Artin map, we know that
‘HO(GL/KaL*” = |GaLb/K‘ =[L: K]

and
|H (G i, L*)| = |Hi (Gryx, Z) = 1
|

Proposition 7.2.7. Let S be a finite set of primes of K, and let T be the set of primes of L lying
over primes in S. If L/K is cyclic, then the Herbrand quotient

h(Ip 1) = an

vES
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Proof. Recall that
e={ TIATZw ) < | ITAI9:.)
veS wlv vgS wlv
By the lemma above, the herbrand quotient of I 7 is equal to

TGy L) = I e

vES veS

Proposition 7.2.8. For every finite Galois extension L/K of number fields, Nm/ /i1 contains

an open subgroup of Ix and therefore is itself open.

Proof. Let S O Sy be the set of primes in K that ramify, and T the set of primes lying over S.
Consider the subgroup Nmy, /iy 7 € Nmy gl C Ix. By the theory of local fields,

Nmy /gy r = H Ok, X H(an open subset of finite index in K7))
végS veS
Thus NmL/K]IL,T is open in [x g and then open in Ik. |

Remark 7.2.9. The norm map NmL/K : I, — Ig induces a norm map between Cy, and Ci, and

there s a commutative diagram:

0 L* I, Cr, 0
JNHI le le
0 K* I Ck 0

with every row exact. And further, there is an isomorphism

HK/K* . Nm(]IL) — CK/NID(CL)

7.3 The Cohomology of the Units

Let L/K be a finite extension of number fields with Galois group G. Let S O S be a finite set
of primes of K, and let T" be the set of primes of L lying over a prime of K in S. Define the group
of T-units to be

U(T) ={a € Ljordy(a) =0, Yw ¢ T}
This is stable under G since T is.

We omit the proof of the following property.

Proposition 7.3.1. Assume that G is cyclic. Then

n

where n = [L : K] and n, = [L" : K,].
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7.4 Cohomology of the Idele Classes I: The first Inequality

Lemma 7.4.1. Let K be a number field, and let S O S, be a finite set of primes of K containing

a set of generators for the ideal class group of K. Then
I = K" Ig

Proof. The condition that S contains a set of generators for the ideal class group of K means that

every fractional ideal a can be written as
a=b-(c)

where b € (S) and (c) is a primary ideal. Therefore, every element in I/ (S) can be represented
by a primary fractional ideal. Thus, I/ (S) -i(K*) = 0.

Recall the map Ix — I® = I/(S) defined by (av) = [[yes pgrd” »() induces an isomorphism
I/Ig — I°

Thus,
I/K* - 1g =0

Theorem 7.4.2. For any finite cyclic extension L/K of number fields, h(Cr) = [L : K].

Proof. Let S O Sy be a finite set of primes such that S contains all primes that ramify in L and

all primes below the set of 38 which generates the ideal class group of L.

The last requirement actually means that I;, = Iz 7 - L*, where T is a set of primes lying over

a prime in S.

Then
Cr, = HL/L* = ]IL7T/L* NIy
Note that
L*nlp =U(T)
we have h(Cr) = h(Ir7)/R(U(T)) = [L : K]. [ |

Corollary 7.4.3 (The first inequality). If L/K is a cyclic extension of degree n, then

(HK K*- Nm(]IL)) >n

7.5 Cohomology of the Idele Classes 1I: The Second Inequality

Theorem 7.5.1. For every Galois extension L/K of number fields,

1. (CK : NmL/KCL) < [L . K],

2. Hl(G,CL) = 1;
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3. H*(G,Cp) has order < [L : K].

Proof. Step 1. It suffices to show this theorem in the case that G is a p-group.

This follows from that the maps
Res: Hp(G,M) — Hp(H, M)

are surjective for all sylow p-subgroups H.

Step 2. It suffices to show this theorem in the case that G is a cyclic group of prime order p.

We can prove this step by induction on [G : 1].
Step 3. When G is cyclic, all three statements are equivalent.
This is obvious.

For the rightness of (a) when G is cyclic, see 6.4.2.

7.6 Completion of the Proof of the Reciprocity Law

Theorem 7.6.1. (a) Let L/K be a finite Abelian extension of number fields. Then ¢,k takes

the value 1 on the principal ideles K* C lk.

(b) Let L/K be a finite Galois extension of number fields. Then > Inv,(a) = 0 for all

(A< HZ(GL/K,L*)

Proof. Need to be created.

7.7 The Existence Theorem

Need to be created.
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