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0 Notation and conventions

Remark 0.1. By a variety over a field k we mean a separated k-scheme of finite type which is

geometrically integral.

Definition 0.2. Let p be a prime number. We say that a scheme X has characteristic p if the

unique morphism X → Spec(Z) factors through Spec(Fp) ↪→ Spec(Z). This is equivalent to that

for every open subset U ⊆ |X| we have p · 1 = 0 for 1 ∈ OX(U). We say X has characteristic 0

if X → Spec(Z) factors through Spec(Q) ↪→ Spec(Z), which is equivalent to that n ∈ OX(U)∗ for

all n ∈ Z\{0} and open subset U ⊆ |X|.

Proposition 0.3. If X → Y is a morphism of schemes, and Y has characteristic p (with p a prime

number or p = 0) then X has characteristic p, too.

Definition 0.4. Let p be a prime number. Let Y be a scheme of characteristic p. Then we have

a morphism FrobY : Y → Y , called the absolute Frobenius morphism of Y , it is given by

(a) FrobY is the identity on the underlying topological space |Y |;

(b) Frob♯Y : OY → OY is given on sections by f 7→ fp.

Remark 0.5. If π : X → S is a morphism of schemes, then the absolute Frobenius morphism

FrobX may be not an S-morphism.

Definition 0.6. Now we consider the relative Frobenius morphism. We define the scheme X(p/S)

to be the base change under the morphism FrobS

X(p/S) X

S S

h

π(p)

FrobS

π

Now we have a natural morphism FX/S , called the relative Frobenius morphism of X and defined

by the following commutative diagram

X

X(p/S) X

S S

FX/S

FrobX

π

h

π(p) π

FrobS

Example 1. Assume that S = Spec(R), and X = Spec(R[t1, · · · , tm]/I) for some ideal I =

(f1, · · · , fn). Let f
(p)
i be the polynomial obtained from fi by changing all coefficients of fi

to the pth-power. More explicitly, if fi =
∑
aj(Πti), then f

(p)
i = apj (Πti). Then X(p) =

Spec(R[t1, · · · , tm]/I(p)) with I(p) = (f
(p)
1 , · · · , f (p)n ). And the relative Frobenius morphism FX/S :

X → X(p) is given on rings by the homomorphism

R[t1, · · · , tm]/I(p) → R[t1, · · · , tm]/I

with r 7→ r for r ∈ R and tj 7→ tpj .
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Proposition 0.7. For any base change T → S, there is an isomorphism

(X(p/S))T ∼= (XT )
(p/T )

Definition 0.8. We may define the morphism FrobnY : Y → Y to be the nth iterate of the absolute

Frobenius morphism FrobY : Y → Y . Similarly, there is an nth iterate of the relative Frobenius

morphism Fn
X/S : X → Xpn/S .

Remark 0.9. If S = Spec(Fq), where q = pn. If X is an S-scheme, then the absolute Frobenius

morphism FrobnX is precisely an S-morphism. Indeed,

FrobnX = Fn
X/S

This is because FrobS here is exactly idS. We refer to πX = FrobnX as the geometric Frobenius

morphism of X.

More generally, suppose that S is a scheme over Spec(Fq). If X is an S-scheme then by an

Fq-structure on X we mean a scheme X0 with an isomorphism of S-schemes

X0 ⊗Fq S
∼= X

Then if X is given an Fq-structure, the geometric Frobenius morphism of X0 induces a geometric

Frobenius morphism of X.

1 Definitions and basic examples

We omit the definitions of group varieties and Abelian varieties, as well as their basic properties.

Proposition 1.1. Let X be a group variety over a field k. Then X is smooth over k. If we

write TX,e for the tangent space for the at the identity element, there is a natural isomorphism

TX/k
∼= TX,e ⊗k OX . This induces natural isomorphisms

Ωn
X/k
∼= (

n∧
T∨X,e)⊗k OX

In particular, Ωg
X/k
∼= OX , where g = dimX.

Proof. Since X is a variety, the nonsingular points form a nonempty subset of X. Since the

property that being nonsingular is stable under translations, X must be nonsingular.

Let S = Spec(k[ϵ]/(ϵ2)), by the exercise II.2.8 in this book, the element τ ∈ Tx,e corresponds

to an S-value point τ̃ : S → X, which reduce to e : Spec(k)→ X modulo ϵ.

A vector field on X is defined by an automorphism of XS which reduce to the identity on X.

For any vector τ̃ : S → X, let ζ(τ) be the vector field defined by tτ̃ , that is, defined by

XS = XS ×S S
(id,τ̃)−−−→ XS ×S XS

m−→ XS

Then τ corresponds to a global element in Γ(X, TX/k). That is, there is a k-linear map

TX,e → Γ(X, TX/k)
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Then these by replacing X with some other open sets we can obtain a homomorphism

α : TX,e ⊗k OX → TX/k

As this is a homomorphism between locally free OX -modules of the same rank, it suffices to show

that α is surjective. If x ∈ X is a closed point, the map αx(mod mx) is

Tx,e ⊗k k(x)→ (TX/k)x ⊗OX,x
k(x) = TX,x

which is exactly the map TX,e → TX,x induced by tx. Since the map restricting to stalks αx are

surjective, α is also surjective. ■

Corollary 1.2. The only global vector fields on X are the vector fields defined by tτ̃ .

Proof. This follows from Γ(X,OX) = k. ■

Theorem 1.3 (rigidity theorem). Consider a morphism f : X × Y → Z, and assume that X is

complete. If there is a point y ∈ Y such that X ×{y} maps to a fixed point z ∈ Z, then f factors

through the projection pY : X × Y → Y .

Proof. Since the hypothesis holds when we extend k to kal, we may assume that k is algebraically

closed, we work on the k-rational points.

Choose an affine open neighborhood U of z. Since X is complete, the projection pY : X×Y →
Y is a closed map. Thus, W ≜ pY (f

−1(Z/u)) is closed in Y . By the assumption, y /∈ W . Also,

for any y′ /∈ W , f(X × {y′}) ⊆ U . Considering that U is affine and X × {y′} is complete, we

conclude that f(x × y′) consists of a single point. As a result, f : X × (Y −W ) → Z factors

through pY−W . Note that X × Y is irreducible, X × (Y −W ) is dense in it. Therefore, f factors

through pY everywhere. ■

Proposition 1.4. Every morphism α : X → Y of Abelian varieties is the composite of a homo-

morphism with a translation.

Proof. Let 0X be the unit of X as a group. Suppose that the morphism sends 0X to y. After

composing α with the translation −y we may assume that α(0) = 0. Now it remains to show that

α is precisely a homomorphism of groups, that is, α(x+ x′) = α(x) + α(x′). Consider the map

φ : X ×X → Y (x, x′) 7→ α(x+ x′)− α(x)− α(x′)

then it is a morphism with φ(X × {0}) = 0 = φ({0} × X). By the rigidity theorem we have

φ ≡ 0. ■

Corollary 1.5. (1) If X is a variety over a field k and 0X ∈ X(k) then there is at most one

structure of an Abelian variety on X for which 0X is the identity element.

(2) The group structures on Abelian varieties are commutative.

Proposition 1.6. Any morphism from P1 to a group variety is constant.

Proof. A more explicit description of this type of question could be got from section 1.3 from

Milne’s note. ■
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Theorem 1.7. A rational map φ : V 99KW from a normal variety V to a complete variety

W is defined on an open subset U ⊆ V whose complement V − U has codimension ≥ 2.

Proof. Assume first that V is a curve. Then it remains to show that φ can be extended to

the whole V , that is, U = V .

Suppose that U is an open subset such that φ|U is a morphism. Consider the product

W × V , let Z be the closure of

{(φ(Q), Q) : Q ∈ U}

then we have a dominant morphism

U → Z → V

and the image of Z is closed in V since W is complete. Hence we must have Z → V is

surjective. Note that Z → V is a birational morphism of curves, with V nonsingular, it

must be an isomorphism then. Inverting the isomorphism, we obtain a homomorphism

V → Z →W extending U → Z →W .

For the general case, let U be a subset on which φ is defined, and suppose that V − U
has codimension 1. Then there is a prime divisor Z ⊆ V − U . Since V is normal, the

corresponding local ringOZ is a DVR with fractional field k(V ). Note that the map φ defines

a morphism Spec(k(V ))→ U →W , by the valuation of properness, we obtain a morphism

Spec(OZ) → W . This implies that φ has a representative defined on an open subset U ′

such that U ′ contains the generic point of Z. Thus φ can be defined everywhere. ■

Lemma 1.8. Let φ : V 99K G be a rational map from a nonsingular variety to a group

variety. Then either φ is defined on all of V or the points where it is not defined form a

closed subset of pure codimension 1 in V (i.e., a finite union of prime divisors).

Proof. Define a rational map Φ : V ×V 99K G via (x, y) 7→ φ(x)φ−1(y). We first prove that

Φ is defined at (x, x) if and only if φ is defined at x.

Clearly if φ is defined on x, then Φ is defined on (x, x) and Φ(x, x) = e.

Conversely if Φ is a morphism defined at (x, x), then by choosing the open neighborhood

{x} × V on where Φ is defined, there must be a subset U ⊆ V (not necessarily containing

x) on which φ is defined.

For u ∈ U , the homomorphism φ(x) = Φ(x, u)φ(u) expands φ at x. Thus Φ is defined at

(x, x) if and only if φ is defined at x.

The rational map Φ defines a map

Φ∗ : OG,e → k(V × V )

Note that if Φ is defined on (x, x), then Φ sends it to e ∈ G. Thus, Φ is defined at (x, x) if

and only if

Im(OG,e) ⊆ OV×V,(x,x)

Note that the stalk OV×V,(x,x) is defined by

{f ∈ k(V × V )|there is no prime divisor Z such that (x, x) ∈ Z and vZ(f) < 0} ∪ {0}
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we have φ is not defined over x if and only if there exists f ∈ Im(OG,e) such that vZx(f) < 0.

We identify these prime divisors as a subset of V , its closure is obviously a finite union of

prime divisors on which φ is not defined on. ■

Corollary 1.9. A rational map α : V 99K A from a nonsingular variety to an Abelian

variety is defined on the whole of V .

Proof. This is the consequence of the above two results. ■

Theorem 1.10. Let α : V ×W → A be a morphism from a product of nonsingular varieties

to an Abelian variety, and assume that V ×W is geometrically irreducible (if we further

assume that V or W is complete, then it is a special case of the rigidity theorem). If

α(V × {w0}) = {α0} = α({v0} ×W )

for some α0 ∈ A(k), v0 ∈ V (k), w0 ∈W (k), then

α(V ×W ) = {α0}

Proof. ■

Corollary 1.11. Every rational map α : G 99K A from a group variety to an Abelian

variety (now α is a morphism) is the composite of a homomorphism h : G → A with a

translation.

Theorem 1.12. If two Abelian varieties are birational equivalent, then they are isomorphic

as Abelian varieties.

Proof. The birational map φ : A→ B is actually defined on the whole A and is surjective.

Hence it is an isomorphism of varieties. By composing a translation the new morphism

maps 0 to 0, this morphism is a homomorphism of groups. Then we obtain an isomorphism

of Abelian varieties. ■

Proposition 1.13. Every rational map A1 99K A or P1 99K A is constant.

Proof. Note that α is actually a morphism. After composing a translation we may suppose

that α(0) = 0 and then α is a homomorphism, that is, α(a+ a′) = α(a) +α(a′). Therefore,

α is an additive morphism on A1.

But A1 − {0} is also a group variety, there exists a translation β = −α(1) defined on

A such that β ◦ α is a group homomorphism mapping 1 to 0. Hence α(xy) − α(1) =

α(x) + α(y)− 2α(1) for all x, y ∈ A1 − {0}. This implies that α((x− 1)(y − 1)) = 0 for all

x, y ∈ A1 − {0}. Obviously it infers that α ≡ 0. ■

Definition 1.14. We call that a variety V with dimension n is unirational if there is a dom-

inating rational map An 99K V ; equivalently, k(V ) can be embedded into k(X1, · · · , Xn).

A variety V over an arbitrary field k is said to be unirational if Vkal is unirational.

Proposition 1.15. Every rational map α : V 99K A from a unirational variety to an

Abelian variety is constant.
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Proof. The composite An 99K V 99K A induces a rational map β : P1×P1× · · · ×P1 99K A,

and then the rational map can be extended to the whole space.

By the previous results, there exists morphisms βi : P1 → A such that β(x1, · · · , xd) =∑
βi(xi). Then the morphism is constant. ■

2 Line bundles and divisors on Abelian varieties

In this section we prove that all Abelian varieties are projective.

2.1 The theorem of the square

Remark 2.1. If L is a line bundle on X×Y , then we define Ly = i∗L, where i : Xy = X×{y} →
X × Y .

Theorem 2.2. Let X and Y be varieties. Assume that X is complete. Let L and M be two line

bundles on X × Y . If for all closed points y ∈ Y we have Ly
∼= My as sheaves on Xy, then there

exists a line bundle N on Y such that L ∼=M ⊗ p∗YN .

Proof. Since Ly⊗M−1y is the trivial bundle and the variety Xy = X×Spec(k(y))→ Spec(k(y)) is

complete, H0(Xy, Ly ⊗M−1y ) ∼= k(y). Thus, by Grauert’s result, which can be found in this book

III.12.9, the sheaf (pY )∗(L⊗M−1) is locally free of rank one.

We shall prove that the pullback (pY )
∗(pY )∗(L⊗M−1) is isomorphic to L⊗M−1 through the

canonical morphism

α : (pY )
∗(pY )∗(L⊗M−1)→ L⊗M−1

We first look at its property by restricting on Xy. The induced map is

Γ(Xy,OXy)⊗k(y) OXy → Xy

which is an isomorphism since Xy is complete.

By Nakayama lemma and comparing the rank, we conclude that α is an isomorphism. ■

Corollary 2.3 (See-saw principle). With the same assumptions of above, if additionally we assume

that Lx
∼=Mx for some points x ∈ X then L ∼=M .

Proof. We have L ∼=M ⊗ p∗YN . Over Speck(x)× Y this induces that (p∗YN)x ∼= N is trivial. ■

Next we prove the theorem of the cube.

Lemma 2.4. Let X and Y be varieties, with X complete. For a line bundle L on X × Y , the set

{y ∈ Y |Ly is trivial} is closed in Y .

Proof. Note that Xy is complete. Thus, Ly is trivial if and only if Ly(Xy) and L
−1
y (Xy) are both

non-zero (see this link). Hence

{y ∈ Y |Ly is trivial} = {y ∈ Y |h0(Ly) > 0} ∩ {y ∈ Y |h0(L−1y ) > 0}
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2.1 The theorem of the square

But the functors y 7→ h0(Ly) and y 7→ h0(L−1y ) are upper-continuous on Y , so the two sets of the

right side are closed. ■

Proposition 2.5. Let X be a complete variety over a field K, let Y be a k-scheme, and let L

be a line bundle on X × Y . Then there exists a closed subscheme Y0 ↪→ Y which is the maximal

subscheme of Y over L which is trivial, i.e.,

(i) the restriction of L to X × Y0 is the pull back (under pY ) of a line bundle on Y0

(ii) if φ : Z → Y is a morphism such that (idX × φ)∗L is the pullback of a line bundle on Z

under p∗Z then φ factors through Y0.

Proof. This is a trivial consequence of the existence of the Picard scheme, which we will discuss

in section 6. Let Y → PicX/k be the map corresponding to L, then Y0 is simply the fibre over the

zero section of PicX/k. ■

Lemma 2.6. Let X be a complete variety, and let L be a locally free sheaf on X . If LK =

(XK → X)∗L becomes trivial on XK for some field K ⊇ k, then L is trivial on X.

Proof. We reuse the result that an invertible sheaf is trivial if and only if both it and its dual have

nonzero global section. Then the result follows obviously from that

dimK Γ(XK , LK) = dimK(Γ(X,L)⊗k K) = dimk Γ(X,L)

■

Theorem 2.7. Let X and Y be complete varieties over k and let Z be connected, locally Noethe-

rian k-scheme. Consider points x ∈ X and y ∈ Y , and let z be a point of Z. If L is a line bundle

on X × Y ×Z whose restrictions to {x} × Y ×Z, X × {y} ×Z and X × Y × {z} are trivial, then

L is trivial.

Proof. ■

Remark 2.8. The analogous statement for line bundles on a product of two complete varieties is

generally false. More precise, suppose X and Y are complete k-varieties and L is a line bundle

on X × Y . If there exists points x ∈ X and y ∈ Y such that Lx and Ly are trivial, it is not true

that L is generally trivial.

Theorem 2.9 (Theorem of the Cube). Let L be a line bundle on X. Then the line bundle

θ(L) = p∗123L⊗ p∗12L−1 ⊗ p∗13L−1 ⊗ p∗23L−1 ⊗ p∗1L⊗ p∗2L⊗ p3L∗

on X ×X ×X is trivial.

Proof. Note that the restriction of L to {0} ×X ×X is trivial. ■

Corollary 2.10. Considering the morphism (f, g, h) : Y → X × X × X from a scheme Y to a

product of three Abelian varieties. Then we have that the bundle

(f + g + h)∗L⊗ (f + g)∗L−1 ⊗ (f + h)∗L−1 ⊗ (g + h)∗L−1 ⊗ f∗L⊗ g∗L⊗ h∗L

on Y is trivial.
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2.2 Projectivity of Abelian varieties

Corollary 2.11 (Theorem of the Square). Although 2.7 has no square version, we can obtain a

square analogue of 2.10. This result is mainly why we introduce the theorem of cube.

By taking f = id, g = x, h = y : X → X, then for all x, y ∈ X(k),

t∗x+yL⊗ L ∼= t∗xL⊗ t∗yL

Corollary 2.12. If L is a line bundle on an Abelian variety X. The map φL : X(k) → Pic(X)

given by x 7→ [t∗xL⊗ L−1] is a homomorphism.

Corollary 2.13. By making f = n, g = 1, h = −1 : X → X, we can obtain another consequence

of 2.7.

For every line bundle L on X, we have

n∗L ∼= L
n(n+1)

2 ⊗ (−1)∗L
n(n−1)

2

Definition 2.14. We say that a line bundle L is symmetric, if (−1)∗L ∼= L. As a result, n∗L ∼= Ln2
.

Similarly, we can define anti-symmetric line bundle as (−1)∗L ∼= L−1. At this time, n∗L ∼= Ln.

2.2 Projectivity of Abelian varieties

Definition 2.15. Let L be a line bundle on an Abelian variety X. On X × X we define the

Mumford line bundle Λ(L) by

Λ(L) = m∗L⊗ p∗1L−1 ⊗ p∗2L−1

Note that the restriction of Λ(L) on {x} ×X is t∗xL⊗ L−1.

We define K(L) as the maximal closed subscheme of X such that Λ(L)|X×K(L) is trivial on

X×{y} for any y ∈ K(L). As a result, Λ(L)|X×K(L) could be written as p∗2M for some line bundle

M on K(L).

Note that K(L) is compatible with the base change.

Lemma 2.16. Let T be a k-scheme and x : T → X a T -valued point of X. As usual, define LT

to be the pull-back of L under the morphism XT → X.

1. The morphism x factors through K(L) if and only if t∗xLT ⊗ L−1T is a pull-back of a line

bundle on T .

2. If t∗xLT ⊗ L−1T
∼= p∗TM , then M ∼= x∗T .

Proof. 1. We rewrite the composite

XT
tx−→ XT → X

as

XT
id×x−−−→ X ×X m−→ X

Thus, t∗xLT = (idX × x)∗m∗L.
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2.2 Projectivity of Abelian varieties

Note that we can also rewrite

XT → X

as

XT
id×x−−−→ X ×X p1−→ X

We have LT = (idX × x)∗p∗1L.

Then

t∗xLT ⊗ L−1T = (idX × x)∗[Λ(L)⊗ p∗2L] = (idX × x)∗Λ(L)⊗ (p∗Tx
∗L)

Recall that Λ(L)|X×K could be written as p∗2M for any K ⊆ K(L). Thus, x factors through

K(L) if and only if p∗TM for some line bundle M on T .

2. We just compute M through α : T
t7→(0,t)−−−−→ XT . We know that M ∼= α∗p∗TM = α∗(t∗xLT ⊗

L−1T ).

Note that the composite

T
α−→ XT

tx−→ XT → X

is exactly the morphism x. Thus, α∗t∗xLT = x∗L.

Also, the composite

T
α−→ XT

pX−−→ X

is constant. Then the pull-back of L−1 factors through a point. Note that L−1 is a line bundle,

the pull-back of L−1 is trivial. Thus, α∗L−1T is trivial. Therefore, M ∼= x∗T . ■

From the prove of the above two statements, we can obtain a more interesting result.

Proposition 2.17. We have Λ(L)|X×K(L)
∼= OX×K(L).

Proposition 2.18. The subscheme K(L) is a subgroup scheme of X.

Proof. The first statement of 2.16 offers us a way to define the group structure on K(L)(T ) for

any k-scheme T . The theorem of square tells us that this group structure is exactly compatible

with the original group structure. ■

We will prove the following fact we will use here in the next section: let X be an Abelian

variety, for any closed subgroup scheme Y ⊆ X, let Y 0 be the connected component contained

the origin, then Y 0
red ↪→ Y ↪→ X is a Abelian subvariety of X.

Lemma 2.19. If L is ample then K(L) is a finite group scheme.

Proof. Obviously we can assume that k is algebraically closed. Set Y = K(L)0red ⊆ X. Let L′ be

the restriction of L to Y . The line bundle Λ(L′) is then trivial on Y × Y . Pulling back through

the morphism Y
(idY ,−idY )−−−−−−−→ Y × Y we can obtain a trivial line bundle L′ ⊗ (−1)∗L′ on Y .

Note that (−1)∗L′ is also ample, thus L′ ⊗ (−1)∗L′ is ample. Hence, every invertible sheaf of

Y is generated by the global section. Thus, dim(Y ) = 0. ■
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2.2 Projectivity of Abelian varieties

Proposition 2.20. Let X be an Abelian variety over an algebraically closed field k. Let f : X →
Y be a morphism of k-varieties. For x ∈ X, let Cx denote the connected component of the fibre

over f(x) such that x ∈ Cx, and write Fx for the reduced scheme underlying Cx. Then F0 is an

Abelian subvariety of X and Fx = tx(F0) = x+ F0 for all x ∈ X(k).

Proof. Consider the morphism φ : X × Fx → Y which is the composite

X × Fx → X ×X m−→ X
f−→ Y

Clearly φ({0}×Fx) = {f(x)}. Since Fx is connected and complete, the Rigidity Theorem implies

that φ maps the fibres {z} × Fx to a point. Therefore, f(z + x) = f(z + Fx) for any x
′ ∈ Cx. In

particular, let z = y − x we find that f(y − x+ Fx) = f(y) for any x, y ∈ X(k).

Putting y = z, x = 0 we obtain f(z + F0) = f(z), which implies that z + F0 ⊆ Fz. Putting

y = 0, x = z we obtain that −z + Fz ⊆ F0. This shows that Fz = z + F0.

In particular, we have a+ F0 = Fa = F0 for any a ∈ F0. Therefore, F0 is a reduced subgroup

scheme in X, and then is a Abelian subvariety. ■

Corollary 2.21. Suppose that X is a simple Abelian variety, then every morphism from X to

another k-variety is either constant or finite.

Remark 2.22. Let D be an effective divisor of X, that is, all the coefficients of D are positive.

Let L = OX(D) be the corresponding line bundle. We claim that linear system |2D| has no base-

points, i.e., the sections of L⊗2 define a morphism of X to projective space. To see this we have to

show that for every geometric point y ∈ X there exists an element E ∈ |2D| that does not contain

y. Now the theorem of square tells us that the divisors of the form

t∗xD + t∗−xD

belong to |2D|.

For any given y, it is easily to see that we can find x such that y /∈ Supp(t∗xD + t∗−xD). As a

result, there is a morphism from from X to P(Γ(X,L⊗2)).

Also, note that we have a morphism

X → P = |2D|, x 7→ t∗xD + t∗−xD

Definition 2.23. Assume that k is algebraically closed. For an effective divisor D on X we define

the reduced closed subscheme H(D) ⊆ X by

H(D)(k̄) = {x ∈ X(k̄)|t∗xD = D}

Clearly, this is a subgroup scheme.

Lemma 2.24. Assume that k is algebraically closed. Let L be an effective line bundle on the

Abelian variety X. Let f : X → Pn be the map sending X to a projective space, as referred in the

above remark. Let F0 be the set defined in 2.20 corresponding to f . Then H(D)0 = F0 = K(L)0red.
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2.2 Projectivity of Abelian varieties

Proof. Let x ∈ F0. Then f ◦ tx = f . Hence, if s ∈ Γ(X,L⊗2), then s and t∗xs have the same

divisor. Let t be a section of L with divisor D. This gives t∗xD = D, i.e., x ∈ H(D). Since F0 is

connected, we find that F0 ⊆ H(D)0.

Next, obviously, H(D)0 ⊆ K(L)0red.

To prove K(L)0red ⊆ F0, write L
′ for the restriction of L to K(L)0red. We have to show that f

sends x ∈ K(L)0red to f(0). It is sufficient to show that L′ is trivial. This is trivial, since we find

that L is ample. As illustrated in the proof of 2.19, (−1)∗L′ ⊗ L′ is a trivial line bundle. But, L′

and (−1)∗L′ both have nontrivial global elements, then L′ is trivial. ■

Remark 2.25. In the next section, we will prove that there exists a quotient X ′ = X/F0, which is

again an Abelian variety. The Stein factorisation of the morphism f is given by X ↠ X ′ ↪→ Pn,

and L is a pull-back of a bundle on X ′.

Proposition 2.26. Let L be a line bundle on an Abelian variety X which has a non-zero global

section. If K(L) is a group scheme then L is ample.

Proof. We assume that k = k̄. Let D be the divisor corresponding to the given section.

Recall that F0 is an Abelian variety, it consists of a single point.

Then 2.24 tells us that f is quasi-finite. Since f is also proper, it is finite. By general theory,

L is ample. ■

Corollary 2.27. Let D be an effective divisor on an Abelian variety X over an algebraically

closed field. Set L = OX(D). Then the following are equivalent:

1. H(D) is finite;

2. K(L) is finite;

3. L is ample.

Definition 2.28. A line bundle L is said to be non-degenerate if K(L) is finite.

An effective line bundle is non-degenerate if and only if it is ample.

Theorem 2.29. An Abelian variety is a projective variety.

Proof. We first prove for the case k = k̄. Choose a quasi-affine open subset U ⊆ X such that

X\U =
⋃

i∈I Di for certain prime divisors Di. Set D =
∑
Di. It suffices to find D such that

H(D) is finite. We find D such that 0 ∈ U . Then it is easy to find that H(D) ⊆ U through the

definition of H(D). But H(D) is proper, then H(D) is finite.

For arbitrary k, we first choose an ample divisor D ⊆ Xk̄. Note that locally D represents a free

module of rank 1 with glueing data in k̄∗, we can expand k by creating these number to obtain

a line bundle defined on a finite extension K/k, which induces D. If K/k is Galois, then we can

construct

D̃ =
∑

σGal(K/k)

σD

This is an ample divisor defined over k. If K/k is purely inseparable such that αpm ∈ k for all

α ∈ K, then pm ·D is an ample divisor defined over X. ■
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2.3 Projective embeddings of Abelian varieties

Theorem 2.30. No Abelian variety of dimension g can be embedded into P2g−1. No Abelian

variety of dimension g ≥ 3 can be embedded into P2g.

Proof. ■

3 Basic theory of group schemes

3.1 Definitions and examples

Proposition 3.1. LetG be a scheme over a base scheme S. Then the following data are equivalent:

(i) the structure of an S-group scheme on G

(ii) a group structure on the sets G(T ) = HomS(T,G), functorial in T ∈ Sch/S .

For homomorphisms we have a similar assertion: if G1 and G2 are S-group schemes then the

following data are equivalent:

(i) a homomorphism of S-group schemes f : G1 → G2

(ii) group homomorphisms f(T ) : G1(T )→ G2(T ), functorial in T ∈ Sch/S .

Example 2. (1) Let S be a base scheme, the additive group over S, denoted by Ga,S , corresponds

to the functor T 7→ Γ(T,OT ) : Sch/S → Set.

Ga,S can be represented by the scheme Spec(R[x]).

(2) The multiplicative group, denoted by Gm,S , corresponds to the functor T 7→ Γ(T,OT )
∗ :

Sch/S → Set.

As a scheme, Gm = Spec(OS [x, x
−1]).

(3) The nth roots of unity µn,S corresponds to the functor

T 7→ {the elements in Γ(T,OT )
∗ whose order divides n}

The group scheme can be represented as OS [x, x
−1]/(xn − 1), it is a closed subgroup scheme

of Gm,S .

(4) Suppose that char (S) = p, where p is a prime number. Consider the closed subscheme

αpn,S ⊆ Ga,S defined by the ideal (xp
n
), that is, αpn,S = Spec(OS [x]/(x

pn)).

If T is a S-scheme, αpn,S sends T to {f ∈ Γ(T,OT )|fp
n
= 0}.

(5) Let M be a group. Let MS =
⊕

M S, it has a group structure induced by the group

structure on M . As a functor, let MS(T ) be the set of locally constant functions from |T | to M .

(6) (semi-direct product) Let N and Q be two group schemes over a base scheme S. Consider

the functor

Aut(N) : Sch/S → Gr, T 7→ AutT (NT (= N ×S T ))
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Suppose that we are given a homomorphism of group functors ρ : Q → Aut(N), then we may

define the semi-direct group scheme N ⋊ρ Q: the underlying scheme is just N ×S Q, the group

structure is defined by

(n, q) · (n′, q′) = (n · ρ(g)(n′), q · q′)

(7) Let S = Spec(R) be an affine base scheme. Suppose that G = Spec(A) is an S-group

scheme which is affine as a scheme. Then the morphism m, i and e giving G its structure of a

group scheme correspond to R-linear homomorphisms

m̃ : A→ A⊗A

ĩ : A→ A

ẽ : A→ R

with a number of identifies induced by the definition of group schemes.

A unitary R-algebra equipped with maps m̃, ẽ and ĩ satisfying these identifies is called a Hopf

algebra over R. The category of affine group schemes over R is anti-equivalent to the category of

commutative R-Hopf algebras.

3.2 Elementary properties of group schemes

Proposition 3.2. (1) An S-group scheme G is separated if and only if the unit section e : S → G

is a closed immersion.

(2) If S is a discrete scheme then every S-group scheme is separated.

Corollary 3.3. Every group scheme over a field k is separate.

Definition 3.4. (1) Let G be an S-group scheme with unit section e : S → G. Define eG =

e(S) ⊆ G (a subscheme of G) to be the image of immersion e.

(2) Let f : G → G′ be a homomorphism of S-group schemes. Then we define the kernel of f

to be the subgroup scheme Ker(f) = f−1(eG′) of G.

Definition 3.5. Let G be a group scheme over a field k, it is separated over k. The subscheme

eG is a single point.

Assume that G is locally of finite type over k, then the scheme G is locally Noetherian, hence

locally connected. Let G0 be the connected component of eG, it is an open subscheme of G. We

call G0 the identity component of G.

Proposition 3.6. Let G be a group scheme, locally of finite type over a field k.

(1) The identity component G0 is an open and closed subgroup scheme of G which is geomet-

rically irreducible.

(2) The following properties are equivalent:

• G⊗k K is reduced for some perfect field K ⊇ k.

• the ring OG,e ⊗k K is reduced for some perfect field K ⊇ k.
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3.3 Cartier duality

• G is smooth over k.

• G0 is smooth over k.

• G is smooth over k at the origin.

(3) Every connected component of G is irreducible and of finite type over k.

Proof. (1) If G0 is geometrically connected and (3) holds true, then G0 is obviously geometrically

irreducible. We may show that G0 is geometrically connected in the following. More generally, we

shall prove that if X is a connected k-scheme, locally of finite type, that has a k-rational point

x ∈ X(k) = Hom(k,X) then X is geometrically connected.

Let k̄ be an algebraic closure of k. First we show that the projection p : Xk̄ = X ×k k̄ → X is

open and closed. Suppose that {Vα} is an open covering of X, then {Vα,k̄} covers Xk̄. Then the

projection Xk̄ → X is open (resp. closed) if each Vα,k̄ → Vα is open (resp. closed). Hence we may

assume that X = Spec(A) is affine and of finite type over k. Then the result follows immediately.

Suppose that nonempty subsets U1 and U2 are both open and closed in Xk̄. Since X is

connected, p(U1) = p(U2) = X. The unique point x̄ lying over x ∈ Hom(k,X) is then contained

in U1 ∩ U2. Hence U1 ∩ U2 is nonempty and then Xk̄ is connected.

(2) For a scheme X of finite type over k, we have the following properties (see Illusie theorem

3.7): If X is smooth, then X is regular, hence is reduced (because any regular local ring is a

domain); if k is perfect and X is regular, then X/k is smooth. For the second property, there is a

more suitable version at this case : https://stacks.math.columbia.edu/tag/056V.

(3) ■

Theorem 3.7 (Catier theorem). Let G be a group scheme, locally of finite type over a field k of

characteristic 0. Then G is reduced and smooth over k. (By the above proposition if G is reduced

then G is smooth).

Proof. ■

3.3 Cartier duality

Definition 3.8. Let G be a commutative and finite local free over S. Let A = π∗OG. It is a finite

locally free sheaf as Hopf OS-algebra. We define a new sheaf AD = HomOS
(A,OS) with a natural

Hopf OS-algebra structure.

Theorem 3.9 (Catier duality). Let G : G→ S be a commutative S-group scheme which is finite

and locally free over S. Write A = π∗OG. Then GD = Spec(AD) is a commutative, finite locallt

free S-group scheme which represents the contravariant functor

Hom(G,Gm,S) : Sch/S → Gr T 7→ HomGSch/T
(GT ,Gm,T )

The homomorphism GDD → G is an isomorphism.
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3.4 The component group of a group scheme

3.4 The component group of a group scheme

Remark 3.10. We use π0(X) to represent the topological connected components of X, and ω0(X)

for its scheme-theoretic analogue.

Definition 3.11. If X/k is a scheme locally of finite type then ω0(X) will be an etale k-scheme,

and X 7→ ω0(X) is a covariant functor. Further, if X is a group scheme, then ω0(G) inherits a

natural structure of group scheme, which is called the component group scheme of G.

Definition 3.12. Let k be a field with a separable algebraic closure ks and write Γk = Gal(ks/k).

By a Γk-set we mean a set Y equipped with a continuous left action of Γk, the continuity assump-

tion here means that all Γk-orbits in Y are finite.

Remark 3.13. Let S = Spec(k) for a field k. Let Et/S be the categories of etale schemes over S.

Note that every etale scheme X over S can be represented as the union of connected etale schemes

X =
∐

α∈I Spec(Lα) where Lα is a finite separable extension of k. Then there is an equivalence

of categories

Et/k
eq−→ (Γk-sets)

associating to X ∈ Et/k the X(ks) with its natural Γk-action. To obtain a quasi-inverse, write a

Γk-set Y as a union of orbits, say Y =
∐

α∈I(Γk · yα), let Lα ⊇ k be the finite extension corre-

sponding to the open subgroup stab(yα) ⊆ Γα, and associate to Y the S-scheme
∐

α∈I Spec(Lα).

Proposition 3.14. Let k ⊆ ks and Γk = Gal(ks/k) be as above. Associating to an etale k-group

scheme G the group scheme G(ks) with its natural Γk-action gives an equivalence of categories

(etale k-group schemes)
eq−→ (Γk-groups)

Remark 3.15. The proposition tells us that every etale k-group scheme G is a k-form of a constant

group scheme.

In other words, let M = G(ks). We consider it as an abstract group. Then the constant group

scheme Mk/k. The proposition tells us that Mk ⊗ ks ∼= Gks.

Proposition 3.16. Let X be a scheme, locally of finite type over a field k. Then there is an etale

k-scheme ω0(X) and a morphism q : X → ω0(X) over k such that q is universal for k-morphisms

from X to an etale k-scheme. The morphism q is faithfully flat, and its fibres are precisely the

connected components of X.

Proof. Looks easy to understand, but the proof needs to be created. ■

Proposition 3.17. Let G be a group scheme, locally of finite type over a field k. In this case, q

is a homomorphism.

4 Quotients by group schemes

We only list the results in this section.
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4.1 Categorical quotients

Definition 4.1. (1) Let G be a group scheme over a basis S. A left action of G on an S-scheme

X is given by a morphism ρ : G×S X → X such that the composition

X
∼−→ S ×S X

eG×idX−−−−−→ G×S X
ρ−→ X

is the identify on X, and such that the diagram

G×S G×S X G×S X

G×S X X

idG×ρ

ρ

ρ

m×idX

is commutative. Note that ρ induces a left action of G(T ) on X(T ).

(2) Given an action ρ as in (1), we define the graph morphism to be Ψ = Ψρ : G×SX → X×SX

sending (g, x) 7→ (g · x, x). The action ρ is said to be free, or set-theoretically free if Ψ is a

monomorphism of schemes, and is said to be strictly free, or scheme-theoretically free, if Ψ is an

immersion.

(3) If T is an S-scheme and x ∈ X(T ) then the stabilizer of x, denoted by Gx, is the subgroup

scheme of GT that represents the functor T ′ 7→ {g ∈ G(T ′)|g · x = x} on T -scheme T ′.

Proposition 4.2. An action ρ is free means that for all T and all x ∈ X(T ) the stabilizer Gx is

trivial.

Example 3. Let G be a group scheme over S and H ⊆ G is a subgroup scheme then the group

law gives an action of H on G. One can check that the action is strictly free.

More generally, if f : G → G′ is a homomorphism of group schemes then we get a natural

action of G on G′. The action is free if and only if Ker(f) is trivial.

Definition 4.3 (categorical case). Let C be a category with finite products. Let G be a group

object in C. Let X be an object of C.

(a) A left action of G on X is a morphism ρ : G×X → X that induces, for every object T , a

left action of the group G(T ) on the set X(T ).

(b) Let an action of G on X be given. A morphism q : X → Y in C is said to be G-invariant if

q ◦ ρ = q ◦ prX : G×X → Y . By the Yoneda lemma this is equivalent to the requirement that for

every T ∈ C, if x1, x2 ∈ X(T ) are two points in the same G(T )-orbit then q(x1) = q(x2) in Y (T ).

(c) Let f, g be two morphisms from W to X in C. We say that a morphism h : X → Y is a

difference cokernel of the pair (f, g) if h ◦ f = h ◦ g and if h is universal for this property.

(4) Let ρ : G×X → X be a leaf action. A morphism q : X → Y is called a categorical quotient

of X by G if q is a difference cokernel for the pair (ρ, prX) : G × X ⇒ X. In other words, q is

G-invariant, and every G-invariant X → Y ′ factors through q.

Remark 4.4. To study q : X → Y , we can take Y to be our base scheme. Indeed, if q is a

categorical quotient of X by G, then GY = G×S Y acts on X and q is also a categorical quotient

of X by GY in the category Sch/Y . The action of G on X over S is (strictly) free if and only if

the action of GY on X over Y is (strictly) free.
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4.2 Geometric quotients, and quotients by finite group schemes

Proposition 4.5 (When Γ is finite and X is affine). Let Γ be a finite group acting on an affine

scheme X = Spec(A). Let B = AΓ ⊆ A be the subring of Γ-invariant elements, and set Y =

Spec(B).

(1) The natural morphism q : X → Y induces a homeomorphism Γ\|X| ∼−→ Y .

(2) The map q♯ : OY → q∗OX induces an isomorphism OY
∼−→ (q∗OX)Γ.

(3) The ring A is integral over B; the morphism q : X → Y is quasi-finite, closed and surjective.

Definition 4.6. Let ρ : G ×S X → X be an action of an S-group scheme G on an S-scheme X.

Consider the continuous

|prX | : |G×S X| → |X|, |ρ| : |G×S X| → |X|

Given P,Q ∈ |X|, write P ∼ Q if there a point R ∈ |G×S X| with |prX |(R) = P and |ρ|(R) = Q.

Then ∼ is an equivalence relation on |X|.

Let |X|/ ∼ be the set of G-equivalence classes in |X|, equipped with the quotient topology.

Write q : |X| → |X|/ ∼ for the canonical map. Let V be an open subset of |X|/ ∼ and U its

preimage. If f ∈ q∗OX(V ) = OX(U), then we form the elements pr♯X(f) and ρ♯(f) in OG×SX(G×S

U). We say that f is G-invariant if pr♯X(f) = ρ♯(f). The G-invariant functions f form a subsheaf

of rings (q∗OX)G ⊆ qXOX on |X|/ ∼. We define

(G\X)rs = (|X|/ ∼, (q∗OX)G)

and write q : X → (G\X)rs for the natural morphism of ringed spaces.

If (G/x)rs is a scheme and q is a morphism of schemes then we say that it is a geometric

quotient of X by G. If moreover for every S-scheme T we have that (G\X)rs ×S T ∼= (GT \XT )rs

then we say that (G\X)rs is a universal geometric quotient.

Proposition 4.7. In the category RS\S , q is a difference cokernel of the pair (ρ, prX) : G×SX ⇒

X. Consequently, if a geometric quotient of X by G exists, that is, (G\X)rs is a scheme and q us

a morphism of schemes, then q is a categorical quotient in Schrs.

Lemma 4.8.

Theorem 4.9 (Quotients by finite group schemes). Let G be a finite locally free S-group scheme

acting on an S-scheme X. Assume that for every closed point P ∈ |X| the G-equivalence class of

P is contained in an affine open set.

(1) The quotient Y = (G\X)rs is an S-scheme, which therefore is a geometric quotient of X

by G. The canonical morphism q : X → Y is quasi-finite, integral, closed and surjective. If S is

locally Noetherian and X is of finite type over S then q is a finite morphism and Y is of finite

type over S, too.

(2) The formation of the quotient is compatible with flat base change. In other words, let

h : S′ → S be a flat morphism, then Y ×S S
′ = (G×S S

′\X ×S S
′)rs.
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4.3 FPPF quotients

(3) If G acts freely then q : X → Y is finite locally free and the morphism

G×S X → X ×Y X

induced by Ψ = (ρ, prX) is an isomorphism. Moreover, in this case Y is a universal geometric

quotient.

4.3 FPPF quotients

Definition 4.10. Let S be a scheme. We write (S)FPPF for the big fppf site of S. Write FPPF(S)

for the category of sheaves on (S)FPPF. Denote by ShGr/S and ShAb/S the categories of sheaves

of groups, respectively sheaves of Abelian groups, on (S)FPPF. The category ShAb/S is Abelian

but the other is not.

Definition 4.11. Let G be an S-group scheme acting, by ρ : G ×S X → X, on an S-scheme X.

We write (G\X)fppf , or simply G\X, for the fppf sheaf associated to the sheaf

T 7→ G(T )\X(T )

If G\X is representable by a scheme Y then we refer to Y as the fppf quotient of X by G.

Proposition 4.12. Let G be an S-group scheme acting freely on an S-scheme X. Suppose

that the fppf sheaf (G\X)fppf is representable by a scheme Y . Write q : X → Y for the canonical

morphism. Then q is an fppf covering and the morphism Ψ : G×SX → X×Y X is an isomorphism.

This gives a commutative diagram with cartesian squares

G×S X X ×Y X X

X X Y

∼ pr1

qpr2

q

pr2

Proof. By the construction of fppf quotient, the morphism q : X → Y is an epimorphism of fppf

sheaves. Then q is an fppf covering. As functors, G ×S X → X ×Y X is an isomorphism, hence

by Yoneda lemma, Ψ is an isomorphism. ■

Remark 4.13. In the situation of the proposition above, if (G\X)fppf is representable by a scheme,

then the action of G on X is strictly free. Indeed, X ×Y X is a subscheme of X ×S X.

Definition 4.14. We say a property P of morphisms f of schemes is fppf local on the target if

the following two conditions hold:

• P is stable under base change.

• if the base change g : S′ → S is an fppf covering then P (f) ⇐⇒ P (f ′), where f ′ is the base

change of f .

Proposition 4.15. Let P be a property of morphisms of schemes which is local on the target

for the fppf topology. If q : X → Y is an fppf quotient of X under the free action of an S-group

scheme G, then

q : X → Y has the property P ⇔ pr2 : G×SX → X has the property P ⇐ π : G→ S has the property P

where moreover the last implication is an equivalence if X → S is an fppf covering.
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4.4 Finite group schemes over a field

Theorem 4.16 (Raynaud). Let G be an S-scheme acting on an S-scheme X.

(1) Suppose that there exists an fppf quotient Y of X by G. Then Y is also a geometric point

of X in the category of ringed spaces.

(2) Assume that X is locally of finite type over S, and that G is flat and locally of finite

presentation over S. Assume further that the action of G on X is strictly free. If there exists a

geometric quotient Y of X by G then Y is also an fppf quotient. Thus, the quotient morphism

q : X → Y in the category of ringed space is an fppf morphism and Y is a universal geometric

quotient.

We have the following relations:

fppf quotient universal geometric quotient universal categorical quotient

geometric quotient categorical quotient

under the assumption of (2)

Theorem 4.17. Let G be a proper and flat group scheme of finite type over a locally Noetherian

basis S. Let G ×S X → X define a strictly free action of G on a quasi-projective S-scheme X.

Then the fppf quotient G\X is representable by a scheme.

Theorem 4.18. Let G be a flat group scheme of finite type over a locally Noetherian base scheme

S. Let H ⊆ G be a closed subgroup scheme which is flat over S. Suppose that we are in one of

the following cases:

1. dim(S) ≤ 1.

2. G is quasi-projective over S and H is proper over S.

3. H is finite locally free over S such that every fibre Hs ⊆ Gs is contained in an affine open

subset of G.

Then the fppf quotient sheaf G/H is representable by an S-scheme. If H is normal in G, then

G/H has the group structure of an S-group scheme such that q : G → G/H is a homomorphism

of group schemes.

Corollary 4.19. Let X be an Abelian variety over a field k. If H ⊆ X is a closed subgroup

scheme then there exists an fppf quotient q : X → Y = X/H. Y is again an Abelian variety.

4.4 Finite group schemes over a field

Theorem 4.20. If k is a field then the category of commutative group schemes of finite type is

an Abelian category.

Definition 4.21. Let G be a finite group scheme over a field k. We say that G is

• etale, if the structural morphism G→ Spec(k) is etale;

• local, if G is connected.
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4.4 Finite group schemes over a field

Next suppose that G is commutative, we say that G is

• etale-etale, if G and GD are both etale;

• etale-local, if G is etale and GD is local;

• local-etale, if G is local and GD is etale;

• local-local, if G and GD are both local.

(Note that G is obviously finite locally free over k).

Example 4. If char (k) = 0 then by Catier theorem every finite commutative k-group scheme is

etale-etale.

If char (k) = p > 0, then

• Z/mZ is etale-etale for p ∤ m;

• Z/pnZ is etale-local;

• µpn is local-etale;

• αpn is local-local.

Lemma 4.22. Let G1 and G2 be finite group schemes over a field k, with G1 etale and G2 local.

Then the only morphisms from G1 to G2 and from G2 to G1 are trivial ones.

Proof. The properties being local and etaleness are stable under base change. Hence we may

assume that k = k̄. Then G2,red ⊆ G2 is a connected etale subgroup scheme, hence G2,red
∼=

Spec(k). Now note that any homomorphism G1 → G2 factors through G2,red. Similarly, any

homomorphism G2 → G1 factors through G0
1
∼= Spec(k). ■

Proposition 4.23 (connected-etale sequence). Let G be a finite group scheme over a field k.

Then G is an extension of an etale k-group scheme Get ≜ ω0(G) by the local group scheme G0.

Hence we have an exact sequence

1→ G0 → G→ Get → 1

If k is perfect then this sequence splits.

Proof. The exactness of this sequence follows from 3.17.

Now we assume that k is perfect. Then Gred ⊆ G is a closed subgroup scheme. From 3.6 we

know that it is smooth. Obviously, it is quasi-finite, then is etale.

We claim that Gred ↪→ G→ Get is an isomorphism. We assume that k = k̄. Then G is a union

of copies of G0. Then the isomorphism is clear. ■

Lemma 4.24. Let S be a connected base scheme. If

0→ G1 → G2 → G3 → 0

is an exact sequence of finite locally free S-group schemes then rank(G2) = rank(G1) · rank(G3).
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Proposition 4.25. Let char (k) = p > 0. Let G be a finite connected k-group scheme. Then the

rank of G is a power of p.

Proof. ■

Corollary 4.26. A finite commutative k-group scheme is etale-etale if and only if p ∤ rank(G).

5 Isogenies

5.1 Definition of an isogeny, and basic properties

We first use two lemmas from algebraic geometry.

Lemma 5.1. (1) Let X and Y be irreducible Noetherian schemes which are both regular and

with dim(X) = dim(Y ). Let f : X → Y be a quasi-finite morphism. Then f is flat.

(2) Let f : X → Y be a morphism of finite type between Noetherian schemes, with Y reduced

and irreducible. Then there is a non-empty open subset U ⊆ Y such that either f−1(U) = ∅ or

f : f−1(U)→ U is flat.

Proposition 5.2. Let f : X → Y be a homomorphism of Abelian varieties. Then the following

conditions are equivalent:

1. f is surjective and dim(X) = dim(Y );

2. Ker(f) is a finite group scheme and dim(X) = dim(Y );

3. f is a finite, flat and surjective morphism.

Remark 5.3. Note that Y is the FPPF quotient of Ker(f) → X. Thus, if f is a surjective

homomorphism between Abelian varieties, then it is flat.

Definition 5.4. A homomorphism of Abelian varieties is called an isogeny if f satisfies the

equivalent conditions in the above proposition. Since it is surjective of varieties, we may define

the degree of an isogeny is the degree of the induced function fields extension.

Proposition 5.5. If f : X → Y is an isogeny then f induces an isomorphism X/Ker(f)
∼−→ Y .

Theorem 5.6. For a morphism of schemes f : X → Y , the following conditions are equivalent:

• f is universally injective, that is, every base change of f is injective.

• f is injective and for every x ∈ X the residue field k(x) is a purely inseparable extension of

k(f(x)).

• for every field K, the map X(K)→ Y (K) induced by f is injective.

A morphism satisfies these conditions is called a purely inseparable morphism.
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5.1 Definition of an isogeny, and basic properties

Proof. This proof follows from https://stacks.math.columbia.edu/tag/01S4.

1. ⇒ 3.: Note that X(K) can be identified as the set of pairs (x, ϕ) where x ∈ X and ϕ is

an inclusion k(x) ↪→ K. The natural map X(K) → Y (K) sends (x, ϕ) to (f(x), f∗ ◦ ϕ). This is

obviously injective.

3. ⇒ 1.: For any base change S′ → S, suppose that x1, x2 ∈ X ×S S
′ map to the same point

s′ ∈ S′. Choose a field K with two inclusions k(x1) ↪→ K and k(x2) ↪→ K which induce the

same inclusion k(s′) ↪→ K, then these define two morphisms Spec(K)→ XS′ and induce the same

morphism Spec(K) → S′. Note that the composite Spec(K) → S′ → S can also induced by the

composite Spec(K)→ XS′ → X → S. Thus the composites of the two morphisms Spec(K)→ XS′

with XS′ → X are equal. Therefore, x1 = x2.

1.+ 3.⇒ 2.: If there is a point x ∈ X such that k(x) is not a purely inseparable extension of

k(f(x)), we may find a field extension K/k(f(x)) such that k(x) has two k(f(x))-homomorphisms

into K. Then the map X(K)→ Y (K) is not injective, a contradiction.

2.⇒ 3.: This is obvious from that f is injective. ■

Theorem 5.7. Let f : X → Y be an isogeny.

(1) The following conditions are equivalent:

• The function field k(X) is a separable field extension of k(Y ).

• f is an etale morphism.

• Ker(f) is an etale group scheme.

(2) The following conditions are equivalent:

• The function field k(X) is a purely inseparable field extension of k(Y ).

• f is a purely inseparable morphism.

• Ker(f) is a connected group scheme.

Proof. (1) Y is the etale quotient of Ker(f)→ X. Thus (b) and (c) are equivalent.

Recall that being etale induces that finite separable extensions between corresponding residue

fields. Applying this with the generic point X we see that (b) implies (a).

Now we assume that (a) holds true. Recall that a morphism between irreducible schemes sends

the generic point to the generic point if and only if the morphism is dominant (f(η̄) ⊆ f(η)), f

then actually sends the generic point of X to the generic point of Y . Thus the assumption in (a)

means that f is unramified at the generic point of X.

To show that f is etale, it suffices to show that f is unramified everywhere, that is, (ΩX/Y )x = 0

for x ∈ X. Since ΩX/Y is a coherent sheaf, the support of it is a closed subset. Then there is

an open subset of X, which contains the generic point of X, ΩX/Y is 0 on it. Thus, there is a

non-empty open subset of X such that the restriction of f is etale. Therefore f is etale everywhere.

(2) The case that (b) implies (a) is obvious.
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5.2 Frobenius and Verschiebung

If (a) holds true, note that f can be factored as X → X/(Ker(f))0 → Y , where Ker(f)0 ⊆
Ker(f) is the connected component of eX . The kernel of the second isogeny is Ker(f)/Ker(f)0,

this is etale. By (1) we can find that Ker(f) is connected.

Finally suppose that N = Ker(f) is a connected group scheme, choose an affine subscheme

Spec(A). To show that f is purely inseparable, we show that for every K, X(K) → Y (K) is

injective. If y : Spec(K) → Y is a K-valued point, then f−1(y) ⊇ Spec(AK). Obviously AK is

Artinian local. Then f−1(y) consists of a single point. Then f is purely inseparable. ■

Proposition 5.8. Every isogeny can be factorized as a composite of an inseparable isogeny and

a separable isogeny.

Corollary 5.9. For n ̸= 0, the morphism [n]X is an isogeny. If g = dim(X), we have deg([n]X) =

n2g. If (char (k), n) = 1, then [n]X is separable.

Proof. Choose an ample and symmetric line bundle L on X, then we have [n]∗XL
∼= L⊗n

2
. The

restriction of [n]∗XL to Ker([n]X) is a trivial bundle which is ample. Since X is projective, this

implies that Ker([n]X) is finite. Hence [n]X is an isogeny. ■

Corollary 5.10. If X is an Abelian variety over an algebraically closed field k then X(k) is a

divisible group. That is, for every P ∈ X(k) and n ∈ Z\{0} there exists a point Q ∈ X(k) with

n ·Q = P .

Corollary 5.11. If (char (k), n) = 1, then X(n)(ks) = X(n)(k̄) ∼= (Z/nZ)2g.

Proposition 5.12. If f : X → Y is an isogeny of degree d then there exists an isogeny g : Y → X

with g ◦ f = [d]X and f ◦ g = [d]Y .

5.2 Frobenius and Verschiebung

Proposition 5.13. Let X be a g-dimensional Abelian variety over a field k with char (k) = p > 0.

Then the relative Frobenius homomorphism FX/k is a purely inseparable isogeny of degree pg.

Proof. Recall that there is a composition

FrobX : X
FX/k−−−→ X(p) → X

Since FrobX is the identity on the topological space |X|, the underlying space ofX[F ] ≜ Ker(FX/k)

only has one point {e}.

Now we consider an open affine neighborhood U = Spec(A) of {e}, where A has the form

k[x1, · · · , xr]/(f1, · · · , fn), as X is of finite type over k and every ideal of k[x1, · · · , xr] is finitely

generated. Note that e corresponds to the maximal ideal m = (x1, · · · , xn) ⊆ A. The restriction

of FX/k to U , denoted by FU/k is then given by

A = k(x1, · · · , xr)/(f1, · · · , fn)← A(p) = k[x1, · · · , xr]/(f (p)1 , · · · , f (p)n )

sending xi to x
p
i , where f

(p)
i is obtained from fi by raising the coefficients to their p-powers. Then

X[F ] is exactly Spec(B), where B = k[x1, · · · , xr]/(xp1, · · · , x
p
r , f1, · · · , fn). Since B is finite over

k, X[F ] is precisely a finite group scheme. Hence, FX/k is an isogeny.

© f.p. (1800010614@pku.edu.cn) 23 2023.5



5.2 Frobenius and Verschiebung

Consider the m-adic completion of A, suppose that x1, · · · , xg form a basis of m/m2 = T∨X,e,

then by the structure theory of complete regular local rings there is an isomorphism

Â ∼= k[[t1, · · · , tg]]

Then

B ∼= k[t1, · · · , tg]/(tg1, · · · , t
p
g)

In particular, this shows that deg(FX/k) = pg and that X[F ] is a connected group scheme. ■

Remark 5.14. Let R be a ring with char (p) = p > 0. Let A be an R-algebra. Write T p(A) =

A⊗R A⊗R A⊗R · · · ⊗R A for the p-fold tensor product of A over R. The symmetric group Sp on

p letters naturally acts on T p(A). Write Sp(A) ⊆ T p(A) for the subalgebra of Sp-invariants.

Let N : T p(A)→ Sp(A) be the map given by

N(a1 ⊗ · · · ⊗ ap) =
∑
σ∈Sp

aσ(1) ⊗ · · · ⊗ aσ(p)

If s ∈ Sp(A) is a symmetric tensor and t ∈ T p(A) then N(st) = sN(t). It follows that J =

N(T p(A)) is an ideal of Sp(A).

Write U = Spec(A) → T = Spec(R). The group Sp acts naturally on Up
T = U ×T U ×T U ×

· · · ×T U (p factors), and the quotient is given by Sp(U) = Spec(Sp(A)). The scheme Sp(U) is

called the pth-symmetric power of U over T . Let U [p/T ] ↪→ Sp(U) be the closed subscheme defined

by J .

Consider the map

U
∆−→ Up

T → Sp(U)

which corresponds to

Sp(A)→ T p(A)
a1⊗···⊗ap 7→a1···ap−−−−−−−−−−−→ A

Note that the second map sends N(a1 ⊗ · · · ⊗ ap) to p! · a1 · · · ap, which is 0 since char (A) = p.

The map Sp(A) → A factors by Sp(A)/J , and then the morphism U → Sp(U) factors by U [p/T ].

We write

F ′U/T : U → U [p/T ]

for the morphism.

Write A(p/R) for the base change of A under FrobR. The relative Frobenius morphism is then

given by U → U (p/T ) = Spec(A(p/R)). Note that there is a canonical map

φA/R : A(p/R) → Sp(A)/J

sending a ⊗ r to ra ⊗ a ⊗ · · · ⊗ a (mod J). Write φU/T : U [p/T ] → U (p/T ) for the morphism of

schemes induced by φA/R. Then we have FU/T = φU/T ◦ F ′U/T .

Definition 5.15. Consider a base scheme S of characteristic p and an S-morphismX → S. Define

Sp(X), the pth symmetric power of X over S, to be the quotient Xp
S under the natural action of

Sp. We can glue those U [p/T ] for affine U ⊆ X and T ⊆ S to obtain a locally closed subscheme

X [p/S] ↪→ Sp(X). Also, there is a factorization of FX/S

FX/S = (X
F ′
X/S−−−→ X [p/S] φX/S−−−→ X(p/S))
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5.2 Frobenius and Verschiebung

By construction, the composition of F ′X/S and the inclusion X [p/S] ↪→ Sp(X) is the same as the

diagonal ∆ : X → Xp
S and the natural projection Xp

S → Sp(X).

X Xp
S

X [p/S] Sp(X)

X(p/S)

∆

categorical quotientF ′
X/S

φX/S

Lemma 5.16. (1) The construction of X [p/S], as well as the formation of F ′X/S and φX/S , is

functorial in X and compatible with flat base change T → S.

(2) If X is flat over S then φX/S is an isomorphism.

Proposition 5.17. For a commutative S-group scheme G, there is a morphism m(p) : Gp
S → G

given by (g1, · · · , gp) 7→ g1 · · · gp. By the universally property of categorical quotient, the morphism

m(p) is S-invariant and then factors through Sp(G), say via m̄(p) : Sp(G)→ G. Then [p] : G→ G

factors as [p] = (G
F ′
G/S−−−→ X [p/S] ↪→ Sp(G)

m̄(p)

−−−→ G).

G Gp
S

G[p/S] Sp(G)

G(p/S) G

∆

categorical quotientF ′
G/S

φG/S
m̄(p)

Definition 5.18. If G is a commutative flat group scheme over a basis S of characteristic p then

we define the Verschiebung homomorphism

VG/S : G(p/S) → G

to be the composition

G(p/S)
φ−1
G/S−−−→ G[p/S] ↪→ Sp(G)

m̄(p)

−−−→ G

Proposition 5.19. Let S be a scheme with char (S) = p > 0. Let G be a flat S-group scheme.

(1) We have VG/S ◦ FG/S = [p]G : G→ G.

(2) If G is finite locally free over S then the Verschiebung is Cartier dual to the Frobenius

homomorphism. More precisely, we have (VG/S)
D = FGD/S and VG/S = (FGD/S)

D.

Corollary 5.20. Let X be an Abelian variety over a field k with char (k) = p. Then the

Verschiebung homomorphism VX/k : X(p) → X is an isogeny of degree pg. We have VX/k ◦FX/k =

[p]X and FX/k ◦ VX/k = [p]X(p) .

Remark 5.21. We can also define them-iterate of Verschiebung homomorphism like the Frobenius

case. Write Fm
X/k : X(pm) → X for the ”mth-power“ of Frobenius, then

V m
X/k ◦ F

m
X/k = [pm]X
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5.3 Density of torsion points

Proposition 5.22. Suppose that char (k) = p > 0, there is an integer f = f(X), with 0 ≤ f ≤
g = dim(X), called the p-rank of X, such that X[pm](k̄) ∼= (Z/pmZ)f for all m. If Y is isogenous

to X then f(Y ) = f(X).

Proof. We can factor pm : X → X as

[pm]X = (x
Fm
X/k−−−→ X(pm) h1−→ X ′

h2−→ X)

where h1◦Fm
X/k is purely inseparable and h2 is a separable isogeny. Recall that deg([p

m]X) = (pm)2g

and deg(Fm
X/k) = pmg, we have deg(h2) = pd(m) for some 0 ≤ d(m) ≤ gm.

Let f = d(1). Then X[p](k̄) ∼= (Z/pZ)f . By the exact sequence

0→ X[pm−1](k̄)→ X[pm](k̄)
pm−1

−−−→ X[p](k̄)→ 0

we can obtain X[pm](k̄) ∼= (Z/pmZ)f . ■

5.3 Density of torsion points

Definition 5.23. Let im : X[pm] ↪→ X be the inclusion homomorphism. We say that
⋃

mX[pm]

is scheme-theoretically dense in X, if there does not exist a proper closed subscheme Y ⊊ X such

that all im factors through Y .

Remark 5.24. If char (k) ̸= p, we can express the scheme-theoretically dense as topological dense,

i.e., the union of X[pm] is topological dense in X.

However, if char (k) = p, this is generally not true.

Theorem 5.25. Let X be an Abelian variety over a field k and let p be a prime number. Then

the collection of subschemes X[pm] is scheme-theoretically dense in X.

Proof. We proof for char (k) ̸= p and char (k) = p separately.

First we assume that char (k) ̸= p. It suffices to show for the case k = k̄, since we only need to

prove for the underlying topological space. Let T =
⋃

mX[pm], and let Y be the smallest closed

subscheme such that all im factors through Y . Note that Y is indeed the Zariski closure of T . We

first prove that Y is a subgroup scheme.

Let x ∈ T , then the translation tx : X → X maps T to itself. Because Y and Y × Y are

reduced, m(Y ×Y ) ⊆ Y . Further, it is clear that the inverse maps T to T . Thus, Y is a subgroup

scheme.

Consider the identity component Y 0, it is a Abelian subvariety of X. Let N = #ω0(Y ),

g = dim(X) and h = dim(Y 0). First we have #Y 0[pm](k) ≤ p2mh, then #Y [pm](k) ≤ p2mhN .

But we know that #Y [pm](k) = p2mg. Taking m very large we find that h = g. Hence Y 0 = X.

Now let char (k) = p. Let Fm be the mth power of the Frobenius homomorphism and let

X[Fm] be its kernel. We know that X[Fm] ⊆ X[pm]. So it suffices to show that
⋃

mX[Fm] is

scheme-theoretically dense in X. We can prove it using commutative algebra.
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Let Y be a closed subscheme such that all inclusions X[Fm]→ X factors through Y . Choose

an open affine neighborhood U = SpecA with A = k[x1, · · · , xr]/(f (p
m)

1 , · · · , f (p
m)

n ). Then we

know that X[Fm] is defined by the ideal (xp
m

1 , · · · , xp
m

r , f1, · · · , fn) ⊆ A. Let J be the ideal of

Y ∩U . Then JÂ is contained in (xp
m

1 , · · · , xp
m

g ). Note that the intersection of all these ideals is 0

in Â. ■

Proposition 5.26. Let X be an Abelian variety over a field k. If Y → X is a closed subgroup

scheme then the connected component Y 0 ⊆ Y that contains the origin is an open and closed

subgroup scheme of Y that is geometrically irreducible. The reduced underlying scheme Y 0
red ↪→ X

is an Abelian subvariety of X.

Proof. ■

6 The Picard scheme of an Abelian variety

6.1 Relative Picard functors

Definition 6.1. Let PX/S : (Sch/S)
0 → Ab be the contravariant functor

PX/S : T 7→ Pic(XT ) = H1(X ×S T,Gm)

However, this is not representable.

The relative Picard functor PicX/S : (Sch/S)
0 → Ab is defined to be the fppf sheaf associated

to the presheaf PX/S . An S-scheme representing PicX/S (if such a scheme exists) is called the

relative Picard scheme X over S.

Remark 6.2. We shall consider the following situation:

(∗)


the stucture morphism f : X → S is qcqs.

f∗(OX×ST ) = OT for all S-schemes T.

f has a section s : S → X

This holds, for instance, if S = Spec(k) and X is a complete k-variety with X(k) ̸= ∅.

Definition 6.3. If L is a line bundle on XT for some S-scheme T , then writing ϵT : T → XT for

the section induced by ϵ, by a rigidification of L along ϵT we mean an isomorphism α : OT
∼−→ ϵ∗TL.

Let (L1, α1) and (L2, α2) be line bundles onXT with rigidification along ϵ. By a homomorphism

between them we mean a homomorphism of line bundles h : L1 → L2 with the property that

(ϵ∗h) ◦ α1 = α2.

Note that to give an endomorphsim of (L,α), it suffices to give an element h ∈ HomOXT
(L,L)

with ϵ∗(h) = 1. Note that HomOXT
(L,L) is the global section ofHomOXT

(L,L) = L−1⊗L = OXT
,

we have HomOXT
(L,L) ∼= Γ(XT ,OXT

) = Γ(T, f∗(OXT
)). By the assumption (*), this is equal to

Γ(T,OT ).
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6.1 Relative Picard functors

Definition 6.4. Note that the pairs (L,α) form an Abelian group via the tensor product. We

may define a functor PX/S,ϵ : (Sch/S)
0 → Ab by

PX/S,ϵ : T 7→ the isomorphsm classes of rigidified line bundle (L,α) on X ×S T

If h : T ′ → T is a morphism of S-schemes, then PX/S,ϵ(h) sends (L,α) to (L′, α′), where L′ =

(idX × h)∗L and α′ is the pullback of α under h.

Suppose that PX/S,ϵ is representable by an S-scheme. On X ×S PX/S,ϵ we have a universal

rigidified line bundle (P, v), called the Poincare bundle, satisfying the following property: if (L,α)

is a line bundle on X ×S T with along the section ϵ then there exists a unique morphism g : T →
PX/S,ϵ such that

(L,α) ∼= (idX × g)∗(P, v)

Proposition 6.5. Under the assumption (*),

(1) for every S-scheme T there is a short exact sequence

0→ Pic(T )
pr∗T−−→ Pic(XT )→ PicX/S(T )

this property does not need that f admit a section. If further f admit a section, then the right

hand is surjective, that is, the following sequence is exact

0→ Pic(T )
pr∗T−−→ Pic(XT )→ PicX/S(T )→ 0

(2) For any S-scheme T , we have an isomorphism

Pic(XT )/pr
∗
TPic(T )

∼−→ PX/S,ϵ(T )

obtained by sending the class of a line bundle L on XT to the bundle L ⊗ f∗ϵ∗TL
−1 with its

canonical rigidification.

(3) The functor PX/S,ϵ is an fppf sheaf.

Corollary 6.6. PX/S,ϵ
∼= PicX/S are the functors sending T to

{line budles on XT }
{line bundles of the form f∗L, with L a line bundle on T}

Corollary 6.7. PicX/S equals to the Zariski sheaf associated to PX/S .

Theorem 6.8. We list some results about representability for the general case (that is, we no

longer assume that f satisfies (*)):

(1) If f is flat and projective with geometrically integral fibres then PicX/S is representable by

a scheme, locally of finite presentation and separated over S.

(2) If f is flat and projective with geometrically reduced fibres, such that all irreducible com-

ponents of the fibres of f are geometrically irreducible then PicX/S is representable by a scheme,

locally of finite representation over S.

(3) If S = Spec(k) and f is proper then PicX/S is representable by a scheme that is separated

and locally of finite type over k.
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6.2 Digression on graded bialgebras

Remark 6.9. Let X be a complete variety over k, then f satisfies (*). Let Y be a k-scheme and

let L be a line bundle on X ×k Y . By the above theorem PicX/k can be represented by a scheme.

Then there is a morphism Y → PicX/k. Then the maximal closed subscheme Y0 ↪→ Y is then the

fibre over the zero section of PicX/k.

Now we turn to some basic properties of PicX/k.

Proposition 6.10. Let X be a proper variety over k.

(1) The tangent space of PicX/S at the identity element is isomorphic to H1(X,OX). Further,

the connected component Pic0X/S is smooth over k if and only if dimPic0X/S = dimH1(X,OX),

and this always holds if char (k) = 0.

(2) If X is smooth over k then all connected components of PicX/k are complete.

Remark 6.11. If C is a complete curve over a field k. Then PicC/k is a group scheme, locally of

finite type, smooth over k.

In particular, the identity component Pic0C/k is a group variety over k. If in addition we assume

that C is smooth then Pic0C/k is complete, and is therefore an Abelian variety. Then we call Pic0C/k

the Jacobian of C.

6.2 Digression on graded bialgebras

We quickly list some results.

Definition 6.12. We say that the graded k-algebra H• is graded-commutative if

xy = (−1)deg(x) deg(y)yx

for all homogeneous x, y ∈ H•. The algebra H• is said to be connected if H0 = k · 1. The algebra

H• is said to be of finite type over k if dimk(H
n) <∞ for all n.

If H•1 and H•2 are graded k-algebra then the graded k-module H•1 ⊗kH
•
2 inherits the structure

of a graded k-algebra: for homogeneous x, ξ ∈ H•1 and y, η ∈ H•2 one sets (x ⊗ y) · (ξ ⊗ η) =

(−1)deg(y) deg(ξ) · (xξ ⊗ yη). Then a graded k-algebra H• is graded-commutative if and only if the

product operation H• ⊗H• → H• is a homomorphism of graded k-algebras.

Definition 6.13. A graded bialgebra over k is a graded k-algebra H• together with two homo-

morphisms of k-algebras

µ : H• → H• ⊗k H
• called co-multiplication

ϵ : H• → k the identity section

such that

(µ⊗ id) ◦ µ = (id⊗ µ) ◦ µ : H• → H• ⊗k H
• ⊗k H

•

and

(ϵ⊗ id) ◦ µ : H• → H•
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6.3 The dual of an Abelian variety

Theorem 6.14 (Borel-Hopf structure theorem). Let H• be a connected, graded-commutative

bialgebra of finite type over a perfect field k. Then there exists graded bialgebras H•i and an

isomorphism of bialgebras

H• ∼= H•1 ⊗k · · · ⊗k H
•
r

such that the algebra underlying H•i is generated by one element.

Corollary 6.15. With the same hypothesis above, assume that there is an integer g such that

Hn = (0) for all n > g. Then dimk(H
1) ≤ g. If dimk(H

1) = g then H• ∼= ∧•H1 as graded

bialgebras.

Corollary 6.16. Let X be a group variety over a field k. Then H•(X,OX) has a natural structure

of a graded k-bialgebra. We have dimk(H
1(X,OX)) ≤ dim(X).

Definition 6.17. Let H• be a graded bialgebra with comultiplication µ : H• → H•⊗kH
•. Then

an element h ∈ H• is called a primitive element if µ(h) = h⊗ 1 + 1⊗ h.

Proposition 6.18. Let V be a finite dimensional k-vector space, and consider the exterior algebra

∧•V . Then V = ∧1V is the set of primitive elements in ∧•V .

6.3 The dual of an Abelian variety

Remark 6.19. Let X be a complete variety over k. Recall that PicX/k also represents rigidified

the line bundles, let P be the Poincare bundle on X × PicX/k with a rigidification

α : P|{eX}×PicX/k

∼−→ OPicX/k

along the section Spec(k) ↪→ X.

Let L be a line bundle on X. Then there is a uniquely morphism

φL : X → PicX/k

given by x 7→ [t∗xL⊗ L−1]. This morphism satisfies that

(idX × φL)
∗P ∼= Λ(L)

Also, this homomorphism is explicitly This homomorphism factors via Pic0X/k since X is connected.

Theorem 6.20. Let X be an Abelian variety over a field k. Then Pic0X/k is reduced, hence it

is an Abelian variety. For every ample line bundle L the homomorphism φL : X → Pic0X/k is an

isogeny with kernel K(L). We have dimH1(X,OX) = dim(Pic0X/k) = dimX.

Proof. Since L is ample, K(L) is a finite group scheme. Thus dim(Pic0X/k) ≥ dim(X). Therefore

dim(Pic0X/k) = dim(X) = dimk(H
1(X,OX)). Then Pic0X/S is smooth over k, and hence is reduced.

■

Definition 6.21. The Abelian variety Xt = Pic0X/k is called the dual of X. We write P, of PX ,

for the Poincare bundle on X ×Xt. If f : X → Y is a homomorphism of Abelian varieties over k

then we write f t : Y t → Xt for the induced homomorphism, called the dual of f , such that

(id× f t)∗PX
∼= (f × id)∗PY

Remark 6.22. We use the notation ∗D for the Cartier dual of finite group schemes. We use the

notation ∗t for the dual of Abelian varieties.
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7 Duality

7.1 Formation of quotients and the descent of coherent sheaves

Definition 7.1. Let S be a base scheme. Let ρ : G×SX → X be an action of an S-group scheme

G on an S-scheme X. Let F be a coherent sheaf of OX -modules. Then an action of G on F ,

compatible with the action ρ, is an isomorphism λ : pr∗2F
∼−→ ρ∗F of sheaves on G×SX, such that

on G×S G×S X we have a commutative diagram

pr∗3F pr∗23ρ
∗F

(m× idX)∗ρ∗F (idG × ρ)∗ρ∗F

pr∗23(λ)

(idG×ρ)∗(λ)(m×idX)∗(λ)

Proposition 7.2. Let ρ : G ×S X → X be an action of an S-group scheme G. Suppose that

there exists an fppf quotient p : X → Y of X by G, recall that we have a canonical isomorphism

Ψ : G × X → X × X. If F is a coherent OY sheaf then the canonical isomorphism λcan :

pr∗2(p
∗F )

∼−→ ρ∗(p∗F ). This defines a ρ-compatible G-action on p∗F . The functor F 7→ (ρ∗F, λcan)

gives an equivalence between the category of coherent OY -modules and the category of coherent

OX -modules with ρ-compatible G-actions. This restricts to an equivalence between the category

of finite locally free OY -modules and the category of finite locally free OX -modules with G-action.

Proposition 7.3. LetG be a commutative, finite locally free S-group scheme. Let ρ : G×SX → X

be a free action of G on an S-scheme X. Let p : X → Y be the quotient of X by G. Suppose

that f∗(OXT
) = OT for all S-scheme T . Then for any S-scheme there is a canonical isomorphism

of groups

δT : {isomorphism classes of line bundles L on YT with p∗L ∼= OXT
} ∼−→ GD(T )

and this isomorphism is compatible with base change T ′ → T .

7.2 Two duality theorems

Theorem 7.4. Let f : X → Y be an isogeny of Abelian varieties. Then f t : Y t → Xt is again an

isogeny and there is a canonical isomorphism of schemes

Ker(f)D
∼−→ Ker(f t)

Proof. If T is a k-scheme, recall the definition of Y t, any class in Ker(f t)(T ) can be represented by

a line bundle L on YT . Note that f
∗L is trivial, then f∗L is of the form pr∗TM for some line bundle

M on T under the projection prT : XT → T . Thus L′ = L⊗ (pr′T )
∗M−1, where pr′T : YT → T , is

a line bundle on YT which represents the same class with L in Ker(f t)(T ), and its inverse image

on XT is just OXT
. Hence, every class in Ker(f t)(T ) is uniquely represented by a line bundle L

on YT such that f∗L ∼= OXT
.

Then obviously we have Ker(f)D
∼−→ Ker(f t). In particular, f t has finite kernel and then is an

isogeny. ■
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7.3 Further properties of Pic0X/k

Corollary 7.5. Let f : X → Y be a homomorphism. Let M be a line bundle on Y and write

L = f∗M . Then φL : X → Xt equals the composition

X
f−→ Y

φM−−→ Y t f t

−→ Xt

If f is an isogeny and M is non-degenerate then L is non-degenerate too, and rank(K(L)) =

deg(f)2 · rank(K(M)).

Remark 7.6. By choosing T = S = Spec(k), we find that the natural morphism g : T ↪→ Pic0X/k

gives an isomorphism (idX × g)∗P ∼= OX under the morphism

X × Spec(k)→ X × Pic0X/k

This means P|X×{eX} ∼= OX . Thus we can choose a rigidification of P along X × {eX}. Such

a rigidification is unique up to the invertible elements in Γ(X,OX) = k. Then there is a unique

rigidification alone X × {eX} such that it agrees the rigidification along {0} ×Xt at (eX , eX).

Now, let T = X, and consider the dual of Xt. Then there is a morphism κX : X = T → Xtt

defined by the rigidification above.

Lemma 7.7. Let L be a line bundle on X. Then φL = φt
L ◦ κX : X → Xt.

Proof. Just compute it. ■

Theorem 7.8. Let X be an Abelian variety over a field. Then the homomorphism κX is an

isomorphism.

Proof. From the above lemma, κX is an isogeny. Further, by computing the rank of two sides, we

find that deg(κX) = 1. ■

Corollary 7.9. Let L be a non-degenerate line bundle on X. Then K(L) ∼= K(L)D.

Proof. K(L) is exactly the kernel of φL. Then K(L)D ∼= Ker(φt
L)
∼= K(L). ■

7.3 Further properties of Pic0X/k

Remark 7.10. We shall associate to L a homomorphism φL : XT → Xt
T for some k-scheme T .

First we extend the Mumford bundle Λ(L) on XT×TXT . Note that XT×TXT = (X×kX)×kT ,

we may define

Λ(L) = (m× idT )∗L⊗ p13L−1 ⊗ p∗23L−1

that is, we view T as the base scheme.

Now similarly, there is a morphism

φL : XT → PicXT /T

which factors through Xt
T = Pic0X/k ×k T .
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7.3 Further properties of Pic0X/k

Lemma 7.11. (1) The morphism φL only depends on the class of L in PicX/k(T ).

(2) Let f : T → S be a morphism of k-schemes. If M is a line bundle on XS and L =

(idX × f)∗M on XT , then φL : XT → Xt
T is the morphism obtained from φM : XS → Xt

S .

(3) φL is a homomorphism.

Proposition 7.12. Let K(L) ⊆ XT be the kernel of φL. It is just the maximal subscheme of XT

over which Λ(L) is trivial.

Lemma 7.13. Let T be a locally Noetherian k-scheme. Write π : XT×TXT → T for the structure

morphism. For a line bundle L on XT , consider the following conditions:

1. φL = 0.

2. Λ(L) = pr∗2M for some line bundle M on XT .

3. Λ(L) = π∗N for some line bundle N on T .

4. φLt = 0 for some t ∈ T .

Then 1. ⇐⇒ 2. ⇐⇒ 3. ⇒ 4., and if T is connected then all four conditions are equivalent. If

these equivalent conditions are satisfied then N ∼= e∗L−1 and M = pr∗TN , where e : T → XT is

the identify section.

Remark 7.14. Let X and Y be two projective varieties over a field k. Then the contravariant

functor

HomSch(X,Y ) : (Sch/k)→ Set T 7→ HomSch/T (XT , YT )

is representable by a k-scheme, locally of finite type.

Theorem 7.15. Let X and Y be two Abelian varieties over a field k. Then the functor

HomAV(X,Y ) : (Sch/k)→ Ab T 7→ HomGSch/T
(XT , YT )

is representable by an etale commutative k-group scheme.

Lemma 7.16. Let T be a connected k-scheme. Let L be a line bundle on XT . For any two

k-valued points s, t ∈ T (k) we have φLs = φLt . In particular, Pic0X/k ⊆ Ker(φ), where φ is the

map sending L to φL.

Proof. By 7.13, let T = Xt and L = P, we find that Xt ⊆ Ker(φ). As φ is a homomorphism, it

is constant on the connected components.

Let f : T → PicX/K be the morphism corresponding to L. This morphism factors through

some connected components C. Let M = P|X×C . Then φL is the pull-back of φM . By the above

discussion we fine that φMf(s)
= φMf(t)

. ■

Corollary 7.17. Let X,Y be Abelian varieties over k. Then the map

Hom(X,Y )→ Hom(Y t, Xt)

given by f 7→ f t is a homomorphism of k-group schemes. For any n ∈ Z, we have (nX)t = nXt .
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7.3 Further properties of Pic0X/k

Definition 7.18. Let X be an Abelian variety. We call a homomorphism f : X → Xt symmetric

if f = f t, taking the isomorphism κX . Note that Homsym(X,Xt) is exactly the kernel of the

endomorphism Hom(X,Xt) given by f 7→ f − f t.

Proposition 7.19. The map φ : PicX/k → Hom(X,Xt) sending L to φL is a homomorphism of

groups, and it factors through Homsym(X,Xt).

Proof. This follows from that φL = φt
L ◦ κX . ■

Lemma 7.20. Let L be a line bundle on X with φL = 0. If L is not trivial, then H i(X,L) = 0

for all i.

Proof. Since φL = 0, Λ(L) is trivial on X ×X. Thus (α+ β)∗L ∼= α∗L⊗ β∗L for any morphisms

α, β : X → X. By taking α = −β = idX we may find that (−1)∗L = L−1.

First for the group H0(X,L) = Γ(X,L), if there is a nontrivial section s, then (−1)∗s is a

nonzero section of (−1)∗L ∼= L−1. Then both L and L−1 have a nontrivial section. Therefore, L

is trivial on X, a contradiction.

Let i be the smallest positive integer such that H i(X,L) ̸= 0. Consider the composition

X → X ×X m−→ X x 7→ (x, 0) 7→ x

This induces maps

H i(X,L)→ H i(X ×X,m∗L)→ H i(X,L)

with the composition is the identify. By Kunneth formula

H i(X ×X,m∗L) ∼= H i(X ×X, p∗1L⊗ p∗2L) ∼=
∑

a+b=i

Ha(X,L)⊗Hb(X,L) = 0

The result follows immediately. ■

Proposition 7.21. Let X be an Abelian variety over an algebraically closed field k. Let L be an

ample line bundle on X and M a line bundle with φM = 0. Then there is a point x ∈ X(k) such

that M ∼= t∗xL⊗ L−1.

Proof. ■

Corollary 7.22. Let X be an Abelian variety over a field k. Then Pic0X/k = Ker(φ).

Proof. We already know that Pic0 ⊆ Ker(φ). Hence Ker(φ) is the union of some connected

components of Pic. But every k̄-valued point of Ker(φ) lies in Pic0. Then the result follows. ■

Corollary 7.23. Let X be an Abelian variety over a field k. Let L be a line bundle on X.

(1) If [Ln] ∈ Pic0X/k for some n ̸= 0 then [L] ∈ Pic0X/k. In particular, if Ln ∼= OX , then

[L] ∈ Pic0X/k.

(2) We have [L⊗ (−1)∗L−1] ∈ Pic0X/k.
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7.4 Applications to cohomology

(3) We have

[L] ∈ Pic0X/k

⇐⇒ n∗L ∼= Ln, ∀n ∈ Z

⇐⇒ n∗L ∼= Ln, for some n ∈ Z\{0, 1}

Proof. (1) Since φ : PicX/k → Hom(X,Xt) is a homomorphism of groups, φLn = nXt · φL =

φL ◦ nX . If φLn is trivial, since nX is surjective, φL is trivial.

(2) By the definition of φL we find that φ(−1)∗L = −φL for all L. Thus L⊗(−1)∗L−1 ∈ Ker(φ).

(3) If [L] ∈ Pic0X/k, then on X×X we havem∗L ∼= p∗L⊗q∗L, where p and q are the projections.
Then by induction on n we have n∗L = Ln.

In general case, n∗L ∼= Ln ⊗ [L ⊗ (−1)∗L](n2−n)/2, then n∗L ∼= Ln for n ̸= 0, 1 implies that

L⊗ (−1)∗L ∈ Pic0X/k. By (2) we have L2 ∈ Pic0X/k and by (1) then L ∈ Pic0X/k. ■

Definition 7.24. Define the Neron-severi group scheme NSX/k to be the fppf quotient of PicX/k

modulo Pic0X/k. We also write NS(X) = NSX/k(k), it is the Gal(ks/k)-invariant subset of

NSX/k(k̄).

We say that two line bundles L and M are algebraically equivalent, denoted by L ∼alg M , if

[L] and [M ] have the same image in NS(X).

Corollary 7.25. The Neron-Severi group NS(X) is torsion-free. If n ∈ Z, and L is a line bundle

on X then n∗L is algebraically equivalent to Ln2
, in other words, n∗ : NS(X) → NS(X) is

multiplication by n2.

Proof. For L ∈ NS(X), if Ln = 0, that is, Ln ∈ Pic0X/k, then by 7.23 L = 0.

Also by 7.23 (2) and that n∗L = L(n2+n)/2⊗(−1)∗L, n∗L is algebraically equivalent to Ln2
. ■

Corollary 7.26. Recall that there is a natural homomorphism φ : PicX/k → Homsym(X,Xt) ⊆
Hom(X,Xt), since φL = 0 if and only if L ∈ Pic0X/k, it factors as

PicX/k
q−→ NSX/k ↪→ Homsym(X,Xt)

7.4 Applications to cohomology

Proposition 7.27. Let X be an Abelian variety with dim(X) = g. Cup-product gives an iso-

morphism
∧•H1(X,OX)

∼−→ H•(X,OX). For every p and q we have a natural isomorphism

Hq(X,Ωp
X/k)

∼= (

q∧
TXt,0)⊗ (

p∧
T∨X,0)

The hodge numbers hpq = dimq(X,Ωp
X/k) are given by hp,q = Cp

gC
q
g .

Proof. By 6.20 and 6.15, cup products induce isomorphisms. Recall that Ωn
X/k
∼= (

∧n T∨X/k) ⊗
⊗kOX , then

Hq(X,Ωp
X/k)

∼= (

q∧
TXt,0)⊗ (

p∧
T∨X,0)

■
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7.5 The duality between Frobenius and Verschiebung

Corollary 7.28. The morphism nX on X induces multiplication by np+q on Hp(X,Ωp
X).

Remark 7.29. There is a Hodge-de Rham spectral sequence

Ep,q
1 = Hq(X,Ωp

X)⇒ Hp+q
dR (X/k)

on any smooth proper algebraic variety X. Deligne and Illusie show that the spectral sequence

degenerates at the E1-level for k with characteristic 0. But for Abelian varieties, this is also true

without for any restriction for k.

Proposition 7.30. There is an exact sequence

0→ H0(X,Ω1
X/k)

∼= T∨X,0 → H1
dR(X/k)→ H1(X,OX)→ 0

7.5 The duality between Frobenius and Verschiebung

Proposition 7.31. Let X be an Abelian variety over a field k of characteristic p. We identify

(Xt)(p) = (X(p))t, and we denote this Abelian variety by Xt,(p). Then we have

F t
X/k = VXt/k, V t

X/k = FXt/k

Proof. ■

8 The Theta group of a line bundle (skip)

8.1 The theta group G (L)

Definition 8.1. Let X be an Abelian variety over a field k. Let L be a line bundle on X.

For a k-scheme T define G (L)(T ) to be the set of pairs (x, φ) where x ∈ X(T ) and where

φ : LT → t∗xLT is an isomorphism.

By this, we obtain a group functor G : (Sch/k → Gr).

Lemma 8.2. The group functor G (L) is representable. There is an exact sequence of group

schemes

0→ Gm,k → G (L)→ K(L)→ 0

where the last map is given by (x, φ) 7→ x.

Definition 8.3. Consider the morphism

[ , ] : G (L)2 → G (L)

given by

(g1, g2) 7→ g1g2g
−1
1 g−12

Since K(L) = G (L)/Gm is commutative, the image of this morphism is in Gm. Obviously, this

morphism induces a pairing

eL : K(L)2 ∼= (G /Gm)2 → Gm

called the commutative pairing induced by the theta group.

© f.p. (1800010614@pku.edu.cn) 36 2023.5



8.2 Descent of line bundles over homomorphisms

Proposition 8.4. Obviously the pairing has the following properties:

1. eL(x, x) = 1.

2. eL is bilinear.

3. ef
∗L = eL ◦ (f, f).

4. eL⊗M = eL · eM .

5. If L ∈ Pic0X/k, then e
L = 1.

6. For x ∈ K(L) and y ∈ K(Ln), we have eL
n
(x, y) = eL(x, ny).

Theorem 8.5. Let X be an Abelian variety over a field k. Write C for the Abelian category of

commutative group schemes of finite type over k. Associating G (L) with L gives an isomorphism

Xt(k)
∼−→ Ext1C(X,Gm)

8.2 Descent of line bundles over homomorphisms

Theorem 8.6. Let f : X → Y be a surjective homomorphism of Abelian varieties. Let L be a line

bundle on X. Then there is a bijective correspondence between the M ∈ Pic(Y ) with f∗M ∼= L

and the homomorphism Ker(f)→ G (L) lying over the natural inclusion Ker(f) ↪→ X.

9 The cohomology of line bundles (skip)

Theorem 9.1. Let X be a g-dimensional Abelian variety over a field k. Let P be the Poincare

bundle on X ×Xt. Then

Rn(p2)∗P =

{
0 n ̸= g

i0(k) n = g

and

Hn(X ×Xt,P) =

{
0 n ̸= g

k n = g

Here i0(k) denotes the skycraper sheaf at 0 ∈ Xt with stalk k.

Theorem 9.2 (Riemann-Roch theorem). If L is a line bundle on a g-dimensional Abelian variety,

then

χ(L) = c1(L)
g/g!, deg(φL) = χ(L)2

Corollary 9.3. Let f : Y → X be an isogeny. If L is a line bundle on X then χ(f∗L) =

deg(f) · χ(L).

Theorem 9.4 (Vanishing theorem). If L is a non-degenerate line bundle, that is, K(L) is finite,

then there is a unique integer i such that H i(X,L) ̸= 0.

Definition 9.5. Let L be a non-degenerate line bundle then the unique i = i(L) such that

hi(L) ̸= 0 is called the index of L. Recall that i(L) = 0, that is, L is effective, then L is ample.
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Example 5. For the case X is a curve, g = 1. Let D be a divisor on X of degree d. Thus by

Riemann-Roch theorem χ(L) = h0(O(L))− h1(O(L)) = d. Then

D is degenerate ⇐⇒ φL is not an isogeny ⇐⇒ deg(φL) = 0 ⇐⇒ χ(L) = 0 ⇐⇒ d = 0

D is non-degenerate with i(L) = 0 ⇐⇒ h0 > 0, h1 = 0 ⇐⇒ d > 0

D is non-degenerate with i(L) = 1 ⇐⇒ d < 0

Proposition 9.6. (1) Let L be a non-degenerate line bundle on a g-dimensional Abelian variety

X. Then i(L−1) = g − i(L).

(2) If T is a locally Noetherian k-scheme and M is a line bundle on X × T such that all Mt

are non-degenerate then the function t 7→ i(Mt) is locally constant on T . In particular, if L is as

in (1) and L′ is a line bundle on X with [L′] ∈ Pic0X/k then i(L) = i(L⊗ L′).

(3) Let f : X → Y be an isogeny of degree prime to char (k). If M is a non-degenerate line

bundle on Y then f∗M is also non-degenerate and i∗(f∗M) = i(M).

(4) If L is non-degenrate and m ̸= 0 then Lm is also non-degenerate. Furthermore, if m > 0

and char (k) ∤ m then i(Lm) = i(L).

(5) If L1, L2 and L1 ⊗ L2 are all non-degenerate then i(L1 ⊗ L2) ≤ i(L1) + i(L2).

(6) If H is ample, L and L⊗H are both non-degenerate then i(L⊗H) ≤ i(L).

Proof. (1) Recall that the canonical sheaf Ωg ∼= OX , by Serre duality, i(L−1) = g − i(L).

(2) By the semi-continuous theorem, for all j the function t 7→ dimj
k(t)(X ⊗ k(t),Mt) is upper

semi-continuous. Then the first assertion follows immediately. The second assertion follows by

applying this to the Poincare bundle.

(3)

(4) ■

Theorem 9.7 (Kempf-Mumford-Ramanujam). Let L be a non-degenerate line bundle on an

Abelian variety X. Let H be an ample line bundle on X and write Φ(t) for the Hilbert polynomial

of L with respect to H. Then all complex roots of Φ are real, and the index i(L) equals the number

of positive roots, counted with multiplicities.

Remark 9.8. Form this theorem we can also find that if f : X → Y is an isogeny and L is a

non-degenerate line bundle on Y , then i(L) = i(f∗L).

Theorem 9.9. Let L be a line bundle on an Abelian variety X over a field k. Let H be an ample

line bundle on X and write Φ(t) for the Hilbert polynomial of L with respect to H. Then the

multiplicity of 0 as a root of Φ equals the dimension of K(L).
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10 Tate modules, p-divisible groups, and the fundamental group

10.1 Tate-ℓ-modules

Definition 10.1. Let X be an Abelian variety over a field k, and let ℓ be a prime number differ

from char (k). Then we define the Tate ℓ-module of X, denoted by TℓX, to be the projective limit

of the system {X[ℓn](ks)}n∈Z≥0
with respect to the transition maps ℓ : X[ℓn+1](ks)→ X[ℓn](ks).

If char (k) = p > 0, we define

Tp,etX ≜ lim({0} p←− X[p](k̄)
p←− X[p2](k̄)

p←− · · · )

Remark 10.2. The definition of Tate ℓ-module may be reformulated by

TℓX = Homgroups(Qℓ/Zℓ, X(ks))

Indeed,

Hom(Qℓ/Zℓ, X(ks)) = lim
←

Hom(Z/ℓnZ, X(ks)) = lim
←
X[ℓn](ks)

Proposition 10.3. TℓX is a free Zℓ-module of rank 2g.

Remark 10.4. A homomorphism f : X → Y gives rise to a Zℓ-linear, Gal(ks/k)-equivalent map

Tℓf : TℓX → TℓY .

Further suppose that f is an isogeny with kernel N ⊆ X. Applying Hom(Qℓ/Zℓ,−) to the exact

sequence

0→ N(ks)→ X(ks)→ Y (ks)→ 0

we obtain an exact sequence

0→ TℓX
Tℓf−−→ TℓY → Ext1(Qℓ/Zℓ, N(ks))→ Ext1(Qℓ/Zℓ, X(ks))→ Ext1(Qℓ/Zℓ, Y (ks))

First we try to understand the term Ext1(Qℓ/Zℓ, N(ks)). Write N = Nℓ × N ℓ, where Nℓ a

group of ℓ-power order and N ℓ a group of order prime to ℓ. Then

Ext1(Qℓ/Zℓ, N(ks)) = Ext1(Qℓ/Zℓ, Nℓ(ks))

Next consider the long exact sequence

· · · → Hom(Qℓ, Nℓ(ks))→ Hom(Zℓ, Nℓ(ks))→ Ext1(Qℓ/Zℓ, Nℓ(ks))→ Ext1(Qℓ, Nℓ(ks))→ · · ·

Note that Nℓ(ks) is finite, suppose it is killed by ℓa. Then the multiplication by ℓa kills

all terms like Exti(−, Nℓ(ks)). But the multiplication by ℓa is a bijection of Qℓ. Therefore,

Exti(Qℓ, Nℓ(ks)) = 0. Then the exact sequence above gives that

Hom(Zℓ, Nℓ(ks)) ∼= Ext1(Qℓ/Zℓ, Nℓ(ks))

But the right hand is equal to Nℓ(ks), we conclude that

Ext1(Qℓ/Zℓ, N(ks)) ∼= Nℓ(ks)
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10.2 The p-divisible group

Now we turn to the map Ext1(Qℓ/Zℓ, X(ks)) → Ext1(Qℓ/Zℓ, Y (ks)), denote it by E1(f), we

claim it is injective. Choose an isogeny g : Y → X such that g ◦ f = [n]X . Then E1(g ◦ f)
is multiplication by n on Ext1(Qℓ/Zℓ, X(ks)). Now we write n = ℓm · n′ with (n′, ℓ) = 1. Then

it suffices to show that E1(ℓm) is injective. By taking Y = X and f = [ℓm]X the sequence be-

comes 0 → TℓX
ℓm−−→ TℓX

δ−→ Ext1(Qℓ/Zℓ, X[ℓm](ks)) = X[ℓm](ks) → Ext1(Qℓ/Zℓ, X(ks))
E1(ℓm)−−−−→

Ext1(Qℓ/Zℓ, X(ks)). Then the injectivity of E1(ℓm) follows from the surjectivity of δ.

Proposition 10.5. To summarize the above remark, let f : X → Y be an isogeny of Abelian

varieties over a field k, with kernel N . If ℓ is a prime number with ℓ ̸= char (k), then we have an

exact sequence of Zℓ[Gal(ks/k)]-modules

0→ TℓX
Tℓf−−→ TℓY → Nℓ(ks)→ 0

Corollary 10.6. Let VℓX = TℓX ⊗Zℓ
Qℓ. Then the induced map Vℓf : VℓX → VℓY is an

isomorphism.

Remark 10.7. The construction of the Tate module makes sense for arbitrary varieties. For

instance, TℓGa = 0. Let Zℓ(1) denote the Tate module TℓGm. As a Zℓ-module, it is free of rank

1. The action of Gal(ks/k) is therefore given by a character

χℓ : Gal(ks/k)→ Z∗ℓ = GL(Zℓ(1))

called the ℓ-adic cyclotomic character.

If T is any ℓ-adic representation of Gal(ks/k) then we define T (n) to be{
T ⊗Zℓ

Zℓ(1)
⊗n n ≥ 0

T ⊗Zℓ
Zℓ(−1)⊗−n n ≤ 0

where Zℓ(1) = Zℓ(1)
∨.

Proposition 10.8. We have a canonical isomorphism

TℓX
t ∼= (TℓX)∨(1)

Proof. We have

Xt[ℓn] = Ker([ℓn]Xt) = Ker([ℓn])D = X[ℓn]D

Hence,

Xt[ℓn](ks) = X[ℓn]D(ks) ∼= Hom(X[ℓn](ks), k
∗
s) = Hom(X[ℓn](ks), µℓn(ks))

as groups with Galois action. Now by taking projective limits we obtain the result. ■

10.2 The p-divisible group

Definition 10.9. Let S be a base scheme. A p-divisible group over S, also called a Barsotti-Tate

group over S, is an inductive system

{Gn|in : Gn → Gn+1}n∈N

where:
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10.2 The p-divisible group

(1) each Gn is a commutative finite locally free S-group scheme, killed by pn, and flat when

viewed as a sheaf of Z/pnZ-modules;

(2) each in : Gn → Gn+1 is a homomorphism of S-group schemes, inducing an isomorphism

Gn
∼−→ Gn+1[p

n].

Definition 10.10. A homomorphism of p-divisible groups are defined to be the homomorphisms

of inductive systems of group schemes.

Lemma 10.11. Let S be a scheme. Let p be a prime number. If H is an fppf sheaf of Z/pnZ-
modules on S then the following are equivalent:

(1) H is flat as a sheaf of Z/pnZ-modules.

(2) Ker(pi) = Im(pn−i) for all i ∈ {0, 1, · · · , n}.

Proof. For (1)⇒(2): consider the exact sequence

Z/pnZ pn−i

−−−→ Z/pnZ pi−→ Z/pnZ

If H is flat, then by tensor H we obtain a new exact sequence

H
pn−i

−−−→ H
pi−→ H

and we see that (2) holds.

■

Proposition 10.12. The morphisms in give identifications Gm
∼−→ Gm+n[p

m], thus we may treat

Gm as the subgroup scheme of Gm+n.

The morphism [pm] : Gm+n → Gm+n then can be factored as pm : Gm+n → Gm+n[p
n] ⊆ Gm+n.

Then there is an induced morphism pm : Gm+n → Gm.

By the above lemma, the sequence

0→ Gm
im,n−−−→ Gm+n

pm−−→ Gn → 0

is exact.

Definition 10.13. By the above proposition, there is a limit

G = lim
→
Gn

in the category of fppf sheaves of Abelian groups. Then Gn can be treated as G[pn].

If {Gn} and {Hn} are two p-divisible groups, G = lim→Gn and H = lim→Hn, then the

homomorphisms from {Gn} and {Hn} are just the homomorphisms from G to H as fppf sheaves.

Proposition 10.14. By passing from the inductive system {Gn} to the limit G we can identify

the category of p-divisible groups over S as the full subcategory of the category of fppf sheaves in

Abelian groups over S.

An fppf sheaf G comes from a p-divisible if and only if it satisfies the following conditions:
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10.2 The p-divisible group

(1) G is p-divisible, that is, [p]G is an epimorphism;

(2) G is p-torsion, that is, G = lim→G[p
n];

(3) the sub-sheaves G[pn] are representable by finite locally free S-group scheme.

Definition 10.15. If G = lim→Gn is a p-divisible group over a connected base scheme S, then

by definition, G1 is locally free and killed by p. Then the rank of G1 equals to ph for some h. The

integer h is called the height of G. Then Gn has rank pnh.

Over an arbitrary basis S, we define the height of a p-divisible group G as the locally constant

function |S| → Z≥0 given by s 7→ h(G(s)).

Definition 10.16. Let X be an Abelian variety over a field k. Let p be a prime number. Then

we define the p-divisible group of X, notation X[p∞], to be the inductive system

{X[pn]}n≥0

with respect to the natural inclusion homomorphisms X[pn] ↪→ X[pn+1]. The group X[p∞] has

height 2g.

Proposition 10.17. A homomorphism f : X → Y of Abelian varieties over k induces a homo-

morphism f [p∞] : X[p∞]→ Y [p∞] of p-divisible groups.

If f is an isogeny, then f [p∞] is an epimorphism of fppf sheaves. If N is the kernel we find an

exact sequence of fppf sheaves

0→ Np → X[p∞]
f [p∞]−−−→ Y [p∞]→ 0

where N = Np ×Np with Np of p-power order and Np a group scheme with order prime to p.

Definition 10.18. By taking the Catier dual there is a new exact sequence

0→ GD
n → GD

m+n → GD
m → 0

In particular, taking m = 1 this gives homomorphisms ιn : GD
n → GD

n+1. Then the system

{GD
n : ιn} is again a p-divisible group; it is called the Serre dual of G. It has the same height as

G.

A homomorphism f : G→ H induces a dual homomorphism fD : HD → GD.

Proposition 10.19. If X/k is an Abelian variety then we have a canonical isomorphism

Xt[p∞] ∼= X[p∞]D

Remark 10.20. The definition of p-divisible group also makes sense for certain other commutative

group varieties. For instance, for any k-algebra R,

Gm[p∞](R) = {x ∈ R∗|xpn = 1 for some n}

The height of Gm[p∞] is 1.

The dual of Gm[p∞] is the p-divisible group Qp/Zp.

Definition 10.21. Let G be a p-divisible group over k, viewed as an fppf sheaf, then we define

the Tate p-module by TpG = Hom(Qp/Zp, G(k̄)).
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10.3 The algebraic fundamental group

10.3 The algebraic fundamental group

10.4 The fundamental group of an Abelian variety

We omit the proof of the following two theorems.

Theorem 10.22 (Serre-Lang). Let X be an Abelian variety over a field k. Let Y be a k-variety

and eY ∈ Y (k). If f : Y → X is an etale covering with f(eY ) = eX then Y has the structure of

an Abelian variety such that f is a separable isogeny.

Corollary 10.23. Let X be an Abelian variety over a field k. Let Ω be an algebraically closed

field containing k, and regard 0 = eX as an Ω-valued point of X. Write ks for the separable closure

of k inside Ω. Then there are canonical isomorphisms

πalg1 (Xks , 0)
∼= lim
←
X[n](ks) ∼=


∏
ℓ

TℓX, char (k) = 0

Tp,etX ×
∏
ℓ ̸=p

TℓX char (k) = p

where the projective limit runs over all maps X[nm](ks)→ X[n](ks) given by P 7→ m ·P . Further
there is a canonical isomorphism

πalg1 (X, 0) = πalg1 (Xks , 0)⋊Gal(ks/k)

Corollary 10.24. Let X be an Abelian variety over a field k, let k ⊆ ks be a separable algebraic

closure, and let ℓ be a prime number with ℓ ̸= char (k). Then we have

H1(Xks ,Zℓ) ∼= (TℓX)∨ = Hom(TℓX,Zℓ)

as Zℓ-modules with continuous actions of Gal(ks/k). Further we have an isomorphism of graded-

commutative Zℓ-algebras with continuous Gal(ks/k)-action

H•(Xks ,Zℓ) ∼=
•∨
[(TℓX)∨]

11 Polarizations and Weil pairings

11.1 Polarizations

Proposition 11.1. Let X be an Abelian variety. Let λ : X → Xt be a homomorphismm and

consider the line bundle M = (id, λ)∗PX on X. Then φM = λ+ λt.

Proof. First we consider the map

φP : X ×Xt → Xt ×Xtt

it sends (x, ϵ) to the line bundle L = [t∗x,ϵP⊗P−1]. We claim that it is exactly the point (ϵ, κ(x)).

It is sufficient to prove for (x, 0) and (0, ϵ). Since P|X×{0} ∼= OX , the sheaf L|X×{0} = [OX ] ∈ Xt,

which corresponds to the point 0 as a scheme. Since P|{0}×Xt ∼= OXt , we have L|{0}×Xt ∼= [OXt ] ∈
Xtt, which corresponds to the point 0 ∈ Xtt. Thus the claim holds true.

Then φM = (id, λ) ◦ φP ◦ (id, λ)t sends x to λ(x) + λt(x). ■
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11.1 Polarizations

Proposition 11.2. Let X be an Abelian variety over a field k. Let λ : X → Xt be a homomor-

phism. Then the following properties are equivalent:

(a) λ is symmetric;

(b) there exists a field extension k ⊆ K and a line bundle L on XK such that λK = φL;

(c) there exists a finite separable field extension k ⊆ K and a line bundle L on XK such that

λK = φL.

Proof. ■

Corollary 11.3. Let X/k be an Abelian variety. Then the homomorphism ψ : NSX/k →
Homsym(X,Xt) induced by φ : L 7→ φL is an isomorphism.

Proof. We already know it is an injective morphism. Since both group schemes are etale, we can

check it on k̄. ■

Corollary 11.4. Let X/k be an Abelian variety. Let λ : X → Xt be a symmetric homomorphism,

and write M = (id, λ)∗PX . Let k ⊆ K be a field extension and let L be a line bundle on XK

with λK = φL.

(1) We have: λ is an isogeny⇐⇒ L is non-degenerate ⇐⇒ M is non-degenerate.

(2) If λ is an isogeny, then L is effective if and only if M is effective.

(3) We have: L is ample if and only if M is effective.

Corollary 11.5. Let X/k be an Abelian variety. Let λ : X → Xt be a homomorphism. Then

the following properties are equivalent:

(a) λ is a symmetric isogeny and the line bundle (id, λ)∗P on X is ample;

(b) λ is a symmetric isogeny and the line bundle (id, λ)∗P on X is effective;

(c) there exists a field extension k ⊆ K and an ample line bundle L on XK such that λK = φL;

(d) there exists a finite separable field extension k ⊆ K and an ample line bundle L such that

λK = φL.

Definition 11.6. Let X be an Abelian variety over a field k. A polarization of X is an isogeny

λ : X → Xt that satisfies the equivalent conditions in the above corollary.

Since deg(λ) = χ(L) if λk̄ = φL, the degree of a polarization is a square. If λ is an isomorphism,

that is, λ has degree 1, we call it a principal polarization.

Remark 11.7. Let X be an Abelian variety over a field k. We have an exact sequence of fppf

sheaves

0→ Xt → PicX/k → Homsym(X,Xt)→ 0

which gives a long exact sequence in fppf cohomology

0→ Xt(k)→ Pic(X)→ Homsym(X,Xt)
∂−→ H1

fppf(k,X
t)→ · · ·

Proposition 11.8. Let f : X → Y be an isogeny. If µ : Y → Y t is a polarization of Y , then

f∗µ = f t ◦ µ ◦ f is a polarization of X of degree deg(f∗µ) = deg(f)2 · deg(µ).
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11.2 Pairings

Definition 11.9. Let X and Y be Abelian varieties over k. A divisorial correspondence between

X and Y is a line bundle L on X × Y together with rigidification α : L{0}×Y
∼−→ OY and

β : LX×{0}
∼−→ OX that coincide on the fibre over (0, 0).

The correspondences between X and Y form a group Corrk(X,Y ).

Proposition 11.10. Let X/k be an Abelian variety. Then we have a bijection

{polarizaions λ : X → Xt} ∼−→

{
symmetric divisorial correspondences (L,α, β)

on X ×X such that ∆∗XL is ample

}

by associating to a polarization λ the divisorial correspondence (L,α, β) with L = (id × λ)∗PX

and α, β the pull backs under id× λ of the rigidifications αP and βP .

11.2 Pairings

Definition 11.11. Let f : X → Y be an isogeny of Abelian varieties over a field k. Write

β : Ker(f t)
∼−→ Ker(f)D for the isomorphism.

(1) Define ef : Ker(f)×Ker(f t)→ Gm,k to be the perfect bilinear pairing given by ef (x, y) =

β(y)(x). If f = nX , then we obtain a pairing

en : X[n]×Xt[n]→ µn

which we call the Weil pairing.

(2) Let λ : X → Xt be a homomorphism. We write

eλn : X[n]×X[n]→ µn

for the bilinear pairing given by eλn(x1, x2) = en(x1, λ(x2)). If λ = φL we also write eLn instead of

eλn.

Proposition 11.12. Let f : X → Y be an isogeny of Abelian varieties.

(1) For any k-scheme T and points x ∈ Ker(f)(T ) and η ∈ Ker(f t)(T ) we have ef t(η, κX(x)) =

ef (x, η)
−1

(2) Let β1 : Ker(f t)
∼−→ Ker(f)D and β2 : Ker(f tt)DD ∼−→ Ker(f t)D be the canonical iso-

morphism, and let Ker(f)DD ∼−→ Ker(f) be the canonical isomorphism. Then the isomorphism

Ker(f)
∼−→ Ker(f tt) induced by κX equals −β1 ◦ βD1 ◦ γ−1.

11.3 Existence of polarizations, and Zarhin’s trick

Proposition 11.13. Let λ : X → Xt be a symmetric isogeny, and let f : X → Y be an isogeny.

(1) There exists a symmetric isogeny µ : Y → Y t such that λ = f∗µ = f t ◦ µ ◦ f if and

only if Ker(f) is contained in Ker(λ) and is totally isotropic with respect to the pairing eλ :

Ker(λ)×Ker(λ)→ Gm. If such an isogeny µ exists then it is unique.

(2) Assume that an isogeny µ as in (1) exists. Then µ is a polarization if and only if λ is a

polarization.
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Corollary 11.14. Let X be an isogeny over an algebraically closed field. Then X is isogenous to

an Abelian variety that admits a principal polarization.

Theorem 11.15 (Zarhin’s trick). Let X be an Abelian variety over a field k. Then X4 × (Xt)4

carries a principal polarization.

12 The endomorphism ring

12.1 First basic result about the endomorphism algebra

Remark 12.1. Recall that the functor Hom(X,Y ) : Sch/k → Gr sending T to HomT (XT , YT ) is

represented by an etale commutative k-group scheme. If k = ks and K ⊇ k, the k-valued points

Homk(X,Y ) equals the K-valued points HomK(XK , YK).

Theorem 12.2 (Poincare Splitting Theorem). Let X be an Abelian variety over a field k. If Y ⊆
X is an Abelian subvariety, there exists an Abelian subvariety Z ⊆ X such that the homomorphism

f : Y × Z → X given by (y, z) 7→ y + z is an isogeny.

Proof. Write i : Y ↪→ X for the inclusion. Choose a polarization λ : X → Xt, and let

W = Ker(X
λ−→ Xt it−→ Y t)

Note that the homomorphism λY = it ◦ λ ◦ i : Y → Y t is again a polarization. Then Ker(λY ) =

Y ∩W is finite.

Now take Z =W 0
red, this is indeed an Abelian variety with dimension dimW = dimX−dimY .

Since the kernel of f : Y ×Z → X is contained in (Y ∩Z)× (Y ∩Z), it is finite, and then f is an

isogeny. ■

Definition 12.3. A non-zero Abelian variety X over a field k is said to be simple if X has no

Abelian subvarieties other than 0 and X.

Definition 12.4. We say that X is elementary if X is isogenous to a power of a simple Abelian

variety, i.e., X ∼k Y
m for some m ≥ 1 and Y simple.

Remark 12.5. We sometimes use the terminology “k-simple” since an Abelian variety which is

simple over k may not be simple over a field extension. But if k is separably closed, then XL is

simple for every extension L ⊇ k.

Corollary 12.6. A non-zero Abelian variety over k is isogenous to a product of k-simple Abelian

varieties.

Definition 12.7. Let k be a field. We define the category of Abelian varieties over k up to isogeny,

denoted by QAV/k, to be the category with as objects Abelian varieties over k and with

HomQAV/k
(X,Y ) = Hom0(X,Y ) ≜ HomAV/k

(X,Y )⊗Z Q

Definition 12.8. If X and Y are Abelian varieties over k then an element f ∈ Hom0(X,Y ) is

called a quasi-isogeny if f is an isomorphism in the category QAV/k. An element f ∈ Hom0(X,Y )

is a quasi-isogeny of and only if there is a non-zero integer n such that nf is an isogeny from X

to Y .
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12.1 First basic result about the endomorphism algebra

Corollary 12.9. If X is k-simple then End0k(X) is a division algebra. For X we have

End0k(X) ∼=Mm1(D1)× · · · ×Mmn(Dn)

Lemma 12.10. Let X and Y be Abelian varieties over a field k, and let f ∈ Hom(X,Y ).

(1) Let ℓ be a prime number, ℓ ̸= char (k). If Tℓ(f) ∈ HomZℓ
(TℓX,TℓY ) is divisible by ℓm,

then f ∈ Hom(X,Y ) is divisible by ℓm.

(2) Let p be a prime number. If f [p∞] ∈ Hom(X[p∞], Y [p∞]) is divisible by pm then f ∈
Hom(X,Y ) is divisible by pm.

Proof. (1) We have f vanishes on X[ℓm](ks). Note that this is etale, hence f factors through

[ℓm]X .

(2) Similar with (1). ■

Proposition 12.11. Let X and Y be Abelian varieties over a field k.

(1) If ℓ is a prime number, ℓ ̸= char (k) then the Zℓ-linear map

Tℓ : Hom(X,Y )⊗ Zℓ → HomZℓ
(TℓX,TℓY )

given by f ⊗ c 7→ c · Tℓ(f) is injective and has a torsion-free cokernel.

(2) If p is a prime number, the Zp-linear map

Φ : Hom(X,Y )⊗ Zp → Hom(X[p∞], Y [p∞])

given by f ⊗ c 7→ cḟ [p∞] is injective and has a torsion-free cokernel.

Corollary 12.12. For any Abelian varieties X and Y over k, Hom(X,Y ) is a free Z-module of

rank at most 4 dim(X) dim(Y ).

Proof. This follows from that HomZℓ
(TℓX,TℓY ) is a free Zℓ-module of rank 4 dim(X) dim(Y ) (note

that TℓX is a free Zℓ-module of rank 2 dim(X)). ■

Corollary 12.13. If X is a g-dimensional Abelian variety over a field k then its Neron-Severi

group NS(X) is a free Z-module at most 4g2.

Proof. We have a canonical isomorphism NS(X)
∼−→ Homsym(X,Xt). ■

Corollary 12.14. Let X and Y be Abelian varieties over a field k. Fix a separable algebraic

closure k ⊆ ks. Then there is a finite field extension k ⊆ K inside ks which is the smallest field

extension over which all homomorphisms from X to Y are defined, by which we mean that K has

the following properties:

(a) for any field extension K ⊆ L we have HomK(XK , YK)
∼−→ HomL(XL, YL);

(b) if Ω is a field containing ks and F ⊆ Ω is a subfield with k ⊆ F and HomF (XF , YF )
∼−→

HomΩ(XΩ, YΩ), then K ⊆ F .

Proof. The group scheme Hom(X,Y ) is an etale group scheme. Then the theory is just the Galois

descent. ■
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12.2 The characteristic polynomial of an endomorphism

12.2 The characteristic polynomial of an endomorphism

Definition 12.15. Let X be an Abelian variety of dimension g over a field k. If W is a Q-vector

space then a map γ : End(X)→W is said to be homogeneous of degree m if γ(n · f) = nm · γ(f)
for all f ∈ End(X) and all n ∈ Z. Any homogeneous map γ naturally extends to a map γ :

End0(X)→W .

Proposition 12.16. The map deg : End0(X) → Q is a homogeneous polynomial map of degree

2g. This means that if e1, · · · , eu is a basis for End0(X) as a Q-vector space, then there is

a homogeneous polynomial D ∈ Q[t1, · · · , tu] of degree 2g such that deg(c1e1 + · · · + cueu) =

D(c1, · · · , cu) for all ci ∈ Q.

Definition 12.17. Let X be an Abelian varieties over k. If f ∈ End0(X) then by the proposition

above there is a monic polynomial P = Pf ∈ Q[f ] of degree 2g such that P (n) = deg([n]X − f)
for all n ∈ Z. We call P the characteristic polynomial of f . If P =

∑2g
i=0 ait

i then we define the

trace of f by tr(f) = −a2g−1. Note that a0 = deg(−f) = deg(f), we also call it the norm of f .

Theorem 12.18. Let X be an Abelian variety over a field k. Let ℓ be a prime number different

from char (k). For f ∈ End0(X), let Pℓ,f ∈ Qℓ[f ] be the characteristic polynomial of Vℓf ∈
EndQℓ

(VℓX), that is, Pℓ,f (t) = det(t · id− Vℓf). Then Pℓ,f = Pf . In particular, the characteristic

polynomial of Vℓf has coefficients in Q and is independent of ℓ.

Corollary 12.19. Let f ∈ End0(X), then Pf (f) = 0 ∈ End0(X)

Proof. Since Pℓ,f (Vℓf) = 0 ∈ EndZℓ
(TℓX), and Pℓ,f (Vℓf) = Pf (Vℓf) = Vℓ(Pf (f)), then Pf (f) =

0. ■

Corollary 12.20. If f ∈ End(X) then Pf has integral coefficients.

Proof. Let f ∈ End(X). Because End(X) is finitely generated as an additive group, there is

a monic polynomial Q ∈ Z[t] such that Q(f) = 0. Then Vℓ(Q(f)) = Q(Vℓf) = 0. Thus all

eigenvalues of Vℓf are algebraic integers. Hence Pℓ,f = Pf has integral coefficients. ■

Corollary 12.21. For f, g ∈ End0(X) we have the relations

deg(fg) = deg(f) · deg(g), tr(f + g) = tr(f) + tr(g), tr(fg) = tr(gf)

12.3 The Rosati involution

Definition 12.22. Let λ : X → Xt be a polarization. Then for any f ∈ End0(X) we can form the

element f † = λ−1 ◦f t ◦λ : X → X. More explicitly, if f = (1/m) ·g, and assume that µ◦λ = [n]X ,

then f † = (1/mn)(µ ◦ gt ◦ λ) ∈ End0(X). The map † is an involution of the algebra End0(X). It

is called the Rosati involution associated with λ.

Proposition 12.23. If λ, µ : X → Xt are two polarizations, then α ≜ λ−1 ◦ µ ∈ End0(X). If ‡ is
the Rosati involution of µ, then f ‡ = α−1 ◦ f † ◦ α.

Proposition 12.24. Since deg(f †) = deg(f) and [n]†X = [n]X , we have Pf† = Pf . In particular,

tr(f †) = tr(f).
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12.3 The Rosati involution

Lemma 12.25. Let X be an Abelian variety over a field k. Let ℓ be a prime number with

ℓ ̸= char (k). Let λ : X → Xt be a homomorphism, and † the associated Rosati involution, and

let Eλ : VℓX×XℓX → Qℓ(1) the Riemann form of λ. Then for all f ∈ End(X) and all x, y ∈ VℓX
we have

Eλ(Vℓf(x), y) = Eλ(x, Vℓf
†(y))

Proof. Let E : VℓX ×XℓX
t → Qℓ be the pairing such that Eλ(x, y) = E(x, (Vℓλ)(y)).

Then

Eλ(x, Vℓf
†(y)) = E(x, (Vℓλ ◦ Vℓf †)(y)) = E(x, Vℓ(λ ◦ f †)(y)) = E(x, (Vℓf

t ◦ Vℓλ)(y))

Recall that this equals to E(Vℓf(x), Vℓλ(y)) = Eλ(Vℓf(x), y). ■

Proposition 12.26. Let X be an Abelian variety over a field k. Let λ be a polarization of X, and

let f 7→ f † be the associated Rosati involution on End0(X). Then the map NS(X) → End0(X)

sending [M ] to λ−1 ◦ φM induces an isomorphism of Q-vector spaces

i : NS(X)×Q ∼−→ {f ∈ End0(X)|f = f †}

In particular, the Picard number of X, that is, the rank of NS(X), equals the Q-dimension of the

space of †-symmetric elements in End0(X).

Proof. Recall that there is a natural isomorphism NS(X)
∼−→ Homsym(X,Xt), then

NS(X)⊗Q ∼−→ Hom0,sym(X,Xt)

Now consider the isomorphism Hom0(X,Xt)
∼−→ End0(X) sending f to λ−1 ◦ f , the image of f is

†-symmetric if and only if f = f t. The result then follows. ■

Theorem 12.27. Let X be an Abelian variety of dimension g over a field k. Let † be the Rosati

involution associated with a polarization λ.

(1) If λ = ϖL for some ample bundle L then for f ∈ End(X) we have

tr(ff †) = 2g · c1(L)
g−1 · c1(f∗L)
c1(L)g

(2) The bilinear form End0(X)× End0(X)→ Q given by (f, g) 7→ tr(f · g†) is symmetric and

positive definite.

Proof. (1)

(2) Reduce to the case k = k̄. ■
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12.4 The Albert classification

12.4 The Albert classification

13 The Fourier transform and the Chow ring (skip)

13.1 The Chow ring

Definition 13.1. Let X be a variety over a field k. The group Zr(X) of r-cycles on X is defined

as the free Abelian group on the r-dimensional closed subvarieties on X. For r = dim(X)− 1 an

r-cycle is the same as a Weil divisor.

An r-cycle α ∈ Zr(X) is said to be rationally equivalent to 0, denoted by α ∼ 0 or α ∼rat 0, if

there exists (r + 1)-dimensional subvarieties W1, · · · ,Wn of X and rational functions fi ∈ k(Wi)
∗

such that α =
∑n

i=1 div(fi). The cycles rationally equivalent to 0 form a subgroup Ratr(X) of

Zr(X) and we define the Chow group of r-cycles to be the factor group

CHr(X) = Zr(X)/Ratr(X)

We set CHr(X) = CHdim(X)−r(X), this is called the Chow group of codimension r cycles.

Let CH∗(X) =
⊕

r CH
r(X) and CH∗Q(X) = CH∗(X)⊗ZQ. If X is a no-singular variety, there

exists an intersection pairing

CHr(X)× CHs(X)→ CHr+s(X)→ CHr+s(x)

which makes CH∗(X) to be a commutative graded ting with identity. This ring is called the Chow

ring of X.

Proposition 13.2. Let f : X → Y be a morphism of k-varieties. Then we have a pull-back

homomorphism f∗ : CH∗(Y ) → CH∗(X). If f is flat, then f∗ is given by f∗[V ] = [f−1(V )] for

closed subvariety V ⊆ Y .

Remark 13.3. Assume that f : X → Y is proper, and V ⊆ X is a closed subvariety, then

W = f(V ) is a closed subvariety of Y . If dim(W ) = dim(V ), let deg(V/W ) be the degree of

the field extension [k(V ) : k(W )] defined by f , if dim(W ) < dim(V ) let deg(V/W ) = 0. We set

f∗[V ] = deg(V/W )·[W ]. Then f∗ extends to a homomorphism f∗ : Zr(X)→ Zr(Y ), which induces

a homomorphism f∗ : CH
r(X)→ CHr(Y ).

Further, we have the projection formula

f∗((f
∗η) · ϵ) = η · f∗ϵ

If there is a Cartesian square

X ′ X

Y ′ Y

g

f

h

f ′

with h flat and f proper, then we have

f ′∗g
∗α = h∗f∗α
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13.1 The Chow ring

Remark 13.4. Let X be a variety. Let K0(X) be the Grothendieck group of vector bundles on X.

Then K0(X) has a natural structure of a commutative ring, with product [E1]·[E2] = [E1⊗E2]. Let

K0(X) be the Grothendieck group of coherent sheaves on X. Then K0(X) has a natural structure

of a K0(X)-module, by [E]·[F ] = [E⊗OX
F ]. If f : X → Y is a morphism of varieties then we have

a natural ring homomorphism K0(Y ) → K0(X). If f is proper then we have a homomorphism

f∗ : K0(X)→ K0(Y ) given by f∗[F ] =
∑

i≥0(−1)i[Rif∗F ].

If X is nonsingular, there is a natural homomorphism K0(X) → K0(X). This is in fact an

isomorphism (see Hartshorne ex III.6.9). Then we may write K(X) for K0(X).

Definition 13.5. There is a ring homomorphism

ch : K(X)→ CH∗Q(X)

called the Chern character. For a line bundle L with associated divisor class ℓ = c1(L) ∈ CH1
Q(X),

it is given by

[L] 7→ eℓ

(note that eℓ only involves a finite sum, as CHi(X) = 0 for i > dim(X)). Further this gives an

isomorphism

KQ(X)→ CH∗Q(X)

If f : X → Y is a morphism between non-singular varieties then the Chern character commutes

with f∗, that is, f∗(ch(α)) = ch(f∗(α)) for α ∈ K(Y ).

Definition 13.6. Let X and Y be nonsingular varieties. Elements in CH∗Q(X × Y ) are called

correspondences fromX to Y . For a correspondence ξ ∈ CH∗Q(X×Y ) the transpose correspondence
tξ = s∗(ξ), where s : X × Y → Y ×X is the morphism reversing the factors.

Assume Y is complete. If Z is a third non-singular variety then we can compose correspon-

dences: Given φ ∈ CH∗Q(X × Y ) and ψ ∈ CH∗Q(Y × Z) we define their composition, which is a

correspondence from X to Z, by

ψ ◦ φ = pXZ,∗(p
∗
XY (φ) · p∗Y Z(ψ)) ∈ CH∗Q(X × Z)

Here pXY denotes the projection X × Y × Z → X × Y . We have t(ψ ◦ φ) = tφ ◦ tψ.

If f : X → Y is a morphism with graph map γf : X → X × Y , then the correspondence

Γf = [γf (X)] in CH∗Q(X × Y ) is called the graph correspondence of f . Note that Γf = γf,∗([X]),

then Γgf = Γg ◦ Γf .

Assume that X is complete. A correspondence Γ from X to Y gives rise to a homomorphism

of groups γ : CH∗(X)→ CH∗(Y ) by

γ(α) = pY,∗(p
∗
X(α) · Γ)

If Γ = Γf then γ = f∗. If Γ = tΓf then γ = f∗.

Lemma 13.7. Let S be a smooth quasi-projective k-scheme. Let V (S) be the category of smooth

projective S-schemes. If we are given S-morphisms f : X → Y and g : Y → Z, with classes

α ∈ CH∗Q(X ×S Y ) and β ∈ CH∗Q(Y ×S Z). Then we have

[Γg] ◦ α = (idX × g)∗(α) β ◦ [Γf ] = (f × idZ)∗β
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similarly, if f ′ : Y → X and g′ : Z → Y are also morphisms in V (S) then

[tΓg′ ] ◦ α = (idX × g′)∗(α) β ◦ [tΓf ′ ] = (f ′ × idZ)∗(β)

14 Jacobian Varieties (skip)

15 Dieudonne theory

15.1 Dieudonne theory for finite commutative group schemes and for

p-divisible groups

Definition 15.1. Let R be a commutative ring with identity. Let α be an endomorphism of R.

If M1 and M2 are (left) R-modules then by an α-linear map f : M1 → M2 we mean an additive

map with the property that f(rm) = α(r) · f(m) for all r ∈ R and m ∈ M1. Such a map is also

called a semi-linear map with respect to α.

Remark 15.2. Consider the module M
(α)
1 = R ⊗R,α M2 obtained by α. Then an α-linear map

f : M1 → M2 gives rise to an R-linear homomorphism f ♯ : Mα
1 → M2 via f ♯(r ⊗m) = r · f(m).

Conversely, for a R-homomorphism g :M
(α)
1 →M2 we can associate the α-linear map g♭ :M1 →

M2 defined by g♭(m) = g(1⊗m). Further, we have

(f ♯)♭ = f, (g♭)♯ = g

Definition 15.3. The skew polynomial ring R[t;α] is the group R[t] equipped the multiplicative

operator as

t · r = α(r) · t, ∀r ∈ R

In other words, the variable t does not commute with the coefficients but is “α-linear”.

Definition 15.4. For the definitions or properties of Dieudonne modules, you can see my note

on Demazure’s famous book “p-divisible groups”.

15.2 Classification up to isogeny

Remark 15.5. Throughout this section, k denotes a perfect field of characteristic p > 0. We write

W =W (k) for its ring of Witt vectors, L for the fraction field of W , and σ for the automorphism

of W (and also of L) induced by the Frobenius automorphism x 7→ xp of k.

Definition 15.6. If N is a finite dimensional L-vector space, by a W -lattice in L we mean a

W -submodule M ⊆ N such that the natural map M ⊗W L→ N is an isomorphism. (Equivalent:

M is free of rank dimL(N) as a W -module.)

If M1 and M2 are W -lattices in N then so are M1 +M2 and M1 ∩M2. We define

χ(M1 :M2) = lengthW (M/M2)− lengthW (M/M1)

where M is any W -lattice in N containing both M1 and M2.
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15.2 Classification up to isogeny

Definition 15.7. A pair (N,F ) is called an F -isocrystal over k, if N is a finitely-dimensional

L-vector space and F is a bijective σ-linear operator F : N → N .

Definition 15.8. Let a ∈ Z. Then a σa-F -crystal over k is a pair (M,F ) consisting of a free

W -module M of finite rank, together with a σa-linear injective map F :M →M ⊗W L.

A morphism of σa-F -crystals f : (M1, F1) → (M2, F2) is a homomorphism f : M1 → M2

of W -modules (so a W -linear map) such that f ◦ F1 = F2 ◦ f . We denote by σa-F -Crys/k the

category of σa-F -crystals over k that is thus obtained.

The map F is not required to take values in M it self; it is allowed to have “denominators”.

If F (M) ⊆ M then we say that the crystal is effective. The condition F is injective implies that

the induced map M ⊗W L → M ⊗W L is bijective. We shall use the notation MQ = M ⊗W L =

M ⊗Zp Qp =M ⊗Z Q.

Remark 15.9. If a = 0 then a σa-F -crystal is of course just a finite free W -module M together

with a linear injective map M →MQ.

If a = 1 then by an F -crystal we mean a σ-F -crystal, then we write F -Crys/k for σ-F -Crys/k.

Proposition 15.10. The category DMfree
/k of torsion-free Dieudonne modules is equivalent to the

full subcategory of F -Crys/k consisting of all F -crystal (M,F ) with p ·M ⊆ F (M) ⊆M .

Proof. Since F (M) is of the same dimension with M,pM , F must be injective. As a result, we

can define V = F−1p. Thus, the Dieudonne ring D acts on M naturally. We can also verify that

this action is torsion-free. ■

Definition 15.11. A homomorphism of σa-F -crystals f : (M1, f1)→ (M2, f2) is called an isogeny

if the induced map M1,Q → M2,Q is bijective. Thus if one wants to study σa-F -crystals only up

to isogeny, it suffices to know the L-vector space MQ together with its σa-linear Frobenius.

Definition 15.12. Let a ∈ Z. Then a σa-F -isocrystal over k is a pair (N,F ) consisting of an L-

vector space N of finite dimension, together with a bijective, σa-linear endomorphism F : N → N .

A morphism of F -isocrystals f : (N1, F1) → (N2, F2) is an L-linear map f : N1 → N2 such

that f ◦ F1 = F2 ◦ f . We denote by σa-F -Isoc/k the category of σa-F -isocrystals over k that is

thus obtained.

Proposition 15.13. If (M,F ) is a σa-F -crystal then (MQ, F ) is a σ
a-F -isocrystal. In the other

direction, if (N,F ) is a σa-F -isocrystal then for any W -lattice M ⊆ N the pair (M,F|M ) is a

σa-F -crystal.

Remark 15.14. The category σa-F -Isoc/k is Abelian. The category σa-F -Crys/k is additive but

not Abelian. Further, if (M,F ) is a σa-F -crystal and M ′ ⊆ M is a primitive W -submodule that

is stable under F then M/M ′ with Frobenius induced by F is again a σa-F -crystal. Here we recall

that a W -submodule M ′ ⊆M is called primitive if M/M ′ is torsion-free.

Definition 15.15. Let (M,F ) be a σa-F -crystal over k. The rank of M as a W -module is called

the height of (M,F ). Similarly, the height of a σa-F -isocrystal (N,F ) is defined as the L-dimension

of the underlying vector space N .
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15.2 Classification up to isogeny

Writing N = MQ we have that M and F (M) are both W -lattices in N . Hence there exists

integers r < R such that pR ·M ⊆ F (M) ⊆ pr ·M , and we can define ord(F ), the p-adic order of

F , by

ord(F ) = max{r ∈ Z|F (M) ⊆ pr ·M}

Definition 15.16. Let (M,F ) be a σa-F -crystal of height h over k. By the theory of modules over

a PID there exists ordered W -bases {e1, · · · , eh} and {f1, · · · , fh} for M , together with integers

r1 ≤ r2 · · · ≤ rh, such that F (ei) = pri · fi for all i. The sequence of integers ri does not depend

on the chosen bases. The polygon defined by this sequence is called the Hodge polygon of (M,F ).

We shall denote the Hodge slopes of (M,F ) by µ1 < µ2 < · · · < µt, let hi = hi(M,F ) be the

multiplicity of i ∈ Z as Hodge slope, the numbers are called the Hodge numbers. The definition

of slopes and multiplicities can be seen in the following remark.

Remark 15.17 (How to draw a graph). A polygon is given by a finite sequence of rational

numbers r1 ≤ r2 < · · · ≤ rn. One can also describe it by giving a strictly increasing sequence

λ1 < λ2 < · · · < λt together with multiplicities m1,m2, · · · ,mt (in Z>0), where the λj are the

values that occur in the sequence of ri, and mj is the number of times that λj occurs.

The numbers λj are called the slopes of the polygon. In practice it is often convenient to have

a graphical representation of a polygon. For this we consider the graph of the piecewise linear

continuous function ϕ : [0, n] → R that has ϕ(0) = 0 and ϕ(i) = r1 + r2 + · · · + ri for 1 ≤ i ≤ n,

and that is extended linearly between consecutive integers. In terms of the slopes λi this means

that ϕ is linear with slope λj on the interval [m1 + · · ·+mj−1,m1 + · · ·+mj ].

Remark 15.18. Note that, all slopes of the Hodge polygon are integers. The smallest Hodge slope,

µ1 = r1 = ord(F ), is the largest integer r such that F (M) ⊆ pr ·M , and we can recognize this

as the integer the integer defined previously. The largest Hodge slope, rh, is the smallest integer s

such that ps ·M ⊆ F (M).

Example 6. Let G be a p-divisible group over a perfect field k of characteristic p. We define the

Hodge polygon of G to be the Hodge polygon of its Dieudonne module. The only slopes that can

occur are 0 and 1, say with multiplicities h0 and h1. We have h0 + h1 = h, the height of G, and

h1 = dim(G). In particular, since the Dieudonne module of X[p∞] is equal to

M(X[p∞]) = lim
←
M(X[pn]) = lim

←,n
( lim
→,m

HomK(X[pn],Wm)) = lim
←,n

(
(W (k)/pnW (k))2g

)
=W (k)2g

the Hodge polygon of an Abelian variety X of dimension g is the polygon

(g, 0)

(2g, g)

O

with g times slope 0 and g times slope 1.
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Lemma 15.19. Let k be a perfect field of characteristic p.

(1) Let (M,F ) be a σa-F -crystal of height h over k. Then for all n ∈ N we have

ord(F ) ≤ ord(Fn)

n
≤ ord det(F )

h

(2) Let (N,F ) be a σa-F -crystal over k. For any W -lattice M ⊆ N the limit

lim
n→∞

ord(Fn
M )

n

exists, and the limit is independent of the choice of the lattice M .

Proof. (1) ■

Definition 15.20. Let (N,F ) be a σa-F -isocrystal over k. Then we define the first Newton slope

of (N,F ), notation λ1 = λ1(N,F ), to be the number limn→∞ ord(Fn
M )/n, where M ⊆ N is any

W -lattice. We will prove that the first Newton slope is a rational number. For a σa-F -crystal we

let λ1(M,F ) = λ1(MQ, F ).

By the above lemma, we have µ1(M,F ) ≤ λ1(M,F ) ≤ ord det(F )

h
. If h = 1, then µ1(M,F ) =

λ1(M,F ).

Lemma 15.21. Let (N,F ) be a σa-F -isocrystal over k. Then we have λ1(N, p
mFn) = n ·

λ1(N,F ) +m for all m,n ∈ Z.

Lemma 15.22. Let (N,F ) be a σa-F -isocrystal of height h over k.

(1) If there exists a W -lattice M ⊆ N such that F h+1(M) ⊆ p−1 ·M , then (N,F ) is effective.

(2) Let r, s be integers with s > 0 and λ1(N,F ) ≥ r/s. Then there exists a W -lattice M ⊆ N
with F s(M) ⊆ pr(M).

Proof. (1) Let M ′ = M + F (M) + · · · + F h(M), which is again a W -lattice in N . We have∑h+1
j=0 F

j(M ′) is exactly the space containing M,F (M), · · · , F 2h+1(M). Thus,

h+1∑
j=0

F j(M ′) =
2h+1∑
j=0

F j(M) =M ′ +
h∑

j=0

(F h+1(M)) ⊆ p−1 ·M ′

Now consider the ascending chain

M ′ ⊆M ′ + F (M ′) ⊆ · · · ⊆
h+1∑
j=0

F j(M ′) ⊆ p−1 ·M ′

As p−1M ′/M ′ is a k-vector space of dimension h, there exists an index n ∈ {0, 1, · · · , h} with∑n
j=0 F

j(M ′) =
∑n+1

j=0 Fj(M
′). Then M ′′ =

∑n
j=0 Fj(M

′) is a lattice with F (M ′′) ⊆ M ′′, so

(N,F ) is effective.

(2) Let F ′ = p1−r(h+1)F s(h+1). We have λ1(N,F
′) = s(h+1)λ1(N,F )+1−r(h+1) ≥ 1. Hence

by the definition of λ1 for any W -lattice M ⊆ N there exists an n ∈ N such that ord((F ′M )n) ≥ n,
that is, (F ′M )n(M) ⊆ M . Let M ′ = M + F ′(M) + · · · + (F ′)n−1(M). Clearly, F ′(M ′) ⊆ M ′.

Thus (p−rF s)h+1(M ′) ⊆ p−1 · M ′. Hence by (1) there exists a W -lattice M ′′ ⊆ N such that

p−rF s(M ′′) ⊆M ′′. ■
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Proposition 15.23. Let (N,F ) be a σa-F -isocrystal of height h over k. Let d = ord det(F ).

Then there exists integers r, s with 0 < s ≤ h and r ≤ d and a W -lattice M ⊆ N such that

λ1(N,F ) =
r

s
and ord(F s

M ) = r. In particular, λ1 ∈ Q
≤ d
h
.

Proof. We can choose integers r, s such that s ∈ [1, h] and

|λ1 −
r

s
| ≤ 1

s(h+ 1)

Let F ′ = p−rF s. Thus |λ1(N,F ′)| = |sλ1(N,F ) − r| ≤ 1

h+ 1
. By the above lemma (2), the

inequality λ(N,F ′) ≥ − 1

h+ 1
implies that there exists a W -lattice M ′ ⊆ N with (F ′)h+1(M ′) ⊆

p−1 ·M ′. Thus by (i) from the above lemma, there exists a W -lattice M ⊆ N with F ′(M) ⊆ M .

Thus, λ1(N,F
′) ≥ ord(F ′) ≥ 0. By the same argument for F ′′ = (F ′)−1, we have λ1(N,F

′) = 0.

Then ord(F ′M ) = 0 and λ1(N,F ) =
r

s
. And further ord((F ′M )s) = r. ■

Corollary 15.24. With the same hypothesis above, if there exists integers r and s > 0 and a

lattice M ⊆ N with F s(M) = pr ·M then λ1(N,F ) =
r

s
=
d

h
and F h(M) = pd ·M . Conversely,

if λ1(N,F ) =
d

h
then there exists a lattice M ⊆ N such that F h(M) = pd ·M .

Definition 15.25. An F -isocrystal (N,F ) is called isoclinic if there exists a W -lattice M ⊆ N

and integers r and s > 0 such that F s(M) = pr ·M ; the quotient r/s is then called the slope of

(N,F ).

Proposition 15.26. Let k be a perfect field of characteristic p.

(1) If (N,F ) is an isoclinic σa-F -isocrystal over k then any sub-isocrystal and quotient-

isocrystal is isoclinic too, of the same slope.

(2) If (N1, F1) and (N2, F2) are isoclinic σa-F -isocrystals over k of different slopes then

Homσa−F−Isoc/k((N1, F1), (N2, F2)) = 0

(3) Given a σa-F -isocrystal (N,F ) over k and one of its slopes λ ∈ Q, there exists a unique

maximal sub-isocrystal of (N,F ) that is isoclinic of slope λ.

Example 7. Let λ ∈ Q and write λ = d/h with h > 0 and gcd(d, h) = 1. Define, for a ∈ Z\{0},
a σa-F -crystal Mλ over k by taking Mλ =W · e1 ⊕ · · · ⊕W · eh with

F (ei) =

{
ei+1, 1 ≤ i < h

pd, i = h

In terms of modules over the ring W [F ] = W [F ;σa] we can also say that we take Mλ =

W [F ]/W [F ] · (F h − pd). It is clear that F h = pd on Mλ, so Mλ is isoclinic of slope λ.

It follows from the above proposition (1) that, for any sub-isocrystal N ′
λ ⊆ Nλ = Mλ ⊗W L,

N ′ is isoclinic of the slope d/h. This means d′/h′ = d/h. But gcd(d, h) = 1 and h′ ≤ h, then

d′ = d, h′ = h. Hence Nλ is a simple isocrystal.

Theorem 15.27 (slope decomposition). Let (N,F ) be a σa-F -isocrystal over a perfect field k of

characteristic p. For λ ∈ Q let (Nλ, F ) be the maximal sub-isocrystal that is isoclinic of slope λ.

Then we have a decomposition of σa-F -isocrystals (N,F ) =
⊕

λ∈Q(Nλ, F ).
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Definition 15.28. Let (N,F ) be a σa-F -isocrystal over k. We define the Newton polygon of

(N,F ) to be the polygon whose slopes are the numbers λ ∈ Q with Nλ ̸= 0, and where we take

each λ with multiplicity mλ equal to the height of (Nλ, F ) (i.e. the L-dimension of Nλ).

If (M,F ) is a σa-F -crystal then we define its Newton polygon to be the Newton polygon of

the associated isocrystal (MQ, F ).

Note that ord(
⊕

(Mλ, F )) = minλ∈Q(ord(Mλ, F )) = min(λ1(Nλ, F )), then λ1(N,F ) is exactly

the minimal Newton slope.

Lemma 15.29. Let k be an algebraically closed field of characteristic p. Let v ∈ Z\{0}, and
write F ⊆ k be the unique sub-field with p|v| elements.

(1) Let V be a finite dimensional k-vector space, and let φ : V → V be a bijective Frobvk-linear

map. Further let V0 = {v ∈ V |φ(v) = v}, which is an F -subspace of V . Then the natural map

k ⊗F V0 → V is an isomorphism.

(2) Let M be a free W (k)-module of finite rank, and let F : M → M be a bijective σv-linear

map. Further let M0 = {m ∈ M |F (m) = m}, which is an W (F )-submodule of M . Then the

natural map W (k)⊗W (F ) M0 →M is an isomorphism.

Theorem 15.30 (Dieudonne). Let k = k̄ be an algebraically closed field of characteristic p,

and let a ∈ Z\{0}. Then the category σa-F -Isoc/k is semisimple. The simple objects are the

isocrystals Nλ, for λ ∈ Q. If (N,F ) is any σa-F -isocrystal over k then we have

(N,F ) ∼=
⊕
λ∈Q

N
⊕ mλ
h(λ)

λ

here h(λ) is the height of Nλ and where mλ = dimL(NL) ∈ Z+ is the multiplicity of λ as a Newton

slope of (N,F ).

Remark 15.31. This statements in the theorem do not hold for a = 0.

Theorem 15.32 (Newton is over Hodge). Let (M,F ) be a σa-F -crystal of height h over k. Then

the Newton polygon of (M,F ) lies on or above its Hodge polygon, and the two polygons have the

same begin point, namely (0, 0), and end point, namely (h, ord det(F )).

15.3 The Newton polygon of an Abelian variety

Definition 15.33. Let X be an Abelian variety of dimension g over a field of characteristic p > 0.

Then X is said to be ordinary if its Newton polygon is given by 0g1g; this is equivalent to the

condition that f(X) = g. We say that X is supersingular if its Newton polygon is given by

Å
1

2

ã2g
.

16 Abelian varieties over finite fields

16.1 The eigenvalues of Frobenius

Definition 16.1. Let q = pm andX a scheme over Fq. Let πX be the “iterated relative Frobenius”

F
(m)
X/Fq

: X → X(pm).
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16.1 The eigenvalues of Frobenius

For any k ⊇ Fq, πX acts on X(k) by sending x : Spec(k) → X to πX ◦ x. This is equal to

πSpec(k) ◦ x.

Proposition 16.2. If we have an embedding X ↪→ PN over Fq then πX sends (a0 : a1 : · · · : aN )

to (aq0 : a
q
1 : · · · : a

q
N ). Then

X(Fqn) = {x ∈ X(F̄q)|πnX(x) = x}

Proposition 16.3. Since for any homomorphism of Abelian varieties f : X → Y we have f ◦πX =

πY ◦ f , πX commutes with all endomorphism of X, and then πX is in the center of End0(X).

Definition 16.4. Let fX = PπX be the characteristic polynomial of πX . It is a monic polynomial

with degree 2g with coefficients in Z.

Proposition 16.5. Let X be an Abelian variety over Fq.

(1) Let ℓ be a prime number, ℓ ̸= p. Then Vℓ(πX) is a semisimple automorphism of VℓX.

(2) Assume thatX is elementary over Fq (i.e., isogenous to a power of a simple Abelian variety).

Then Q[πX ] is a field, and fX is a power of the minimum polynomial fπX
Q of πX over Q.

Theorem 16.6. Let X be an Abelian variety of dimension g over Fq.

(1) Every complex root α of fX has absolute value |α| = √q.

(2) If α is a complex root of fX then so is ᾱ = q/α, and the two roots occur with the same

multiplicity. If α =
√
q or α = −√q occurs as a root then it occurs with even multiplicity.

Proof. (1) If X = X1 × · · · × Xs then VℓX = VℓX1 ⊕ · · · ⊕ VℓXs as Qℓ-modules. Thus fX =

fX1 · · · fXs . Then it suffices to show when X is simple.

■

Definition 16.7. For Y a scheme of finite type over Fq, then the number Nn = |Y (Fqn)| of
Fqn-rational points of Y is finite. Then the zeta function of Y is defined by

Z(Y, t) = exp

( ∞∑
n=1

Nn ·
tn

n

)

Theorem 16.8. Let X be an Abelian variety of dimension g over Fq. Let {α1, · · · , α2g} be the

multiset of complex roots of the characteristic polynomial fX , so that

fX(t) =
∏

(t− αi)

If I is a subset of {1, · · · , 2g}, define αI = Πi∈Iαi.

(1) For any positive integer n we have

|X(Fqn)| =
2g∏
i=1

(1− αn
i ) =

2g∑
j=0

(−1)j · tr(πnX ;

j∧
VℓX)

where ℓ is any prime number different from p and where by tr(πnX) we mean the trace of the

automorphism
∧j Vℓ(π

n
X) of

∧j VℓX.
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(2) The zeta function of X is given by

Z(X,T ) =
P1P3 · · ·P2g−1
P0P2 · · ·P2g

where Pj ∈ Z[t] is the polynomial given by

Pj =
∏
|I|=j

(1− t · αI) = det

(
I − t · πX ;

j∧
VℓX

)

(3) The zeta function satisfies the functional equation Z(X;
1

qgt
) = Z(X; t)

Proof. (1) The characteristic polynomial Pπn
X

of πnX is equal to
∏
(t − αn

i ). Note that the kernel

of the isogeny id− πnX on X(F̄q) is precisely X(Fqn). Since F̄q is algebraically closed, |X(Fqn)| =
deg(id− πnX) = Pπn

X
(1) =

∏2g
i=1(1− αn

i ).

Note that for an linear operator T ∈ End(V ), suppose ai is an eigenvalue of T such that

T · ei = ai · ei for a basis {ei}, then
∧j T · (eI) = aI · (eI), where I is any indexed set with

cardinality j and eI =
∧

i∈I ei ∈
∧j V . Thus the set of eigenvalues of

∧j T ∈ End(
∧j V ) is

precisely the set of aI .

Following the above argument the eigenvalues of
∧j Vℓ(π

n
X) are the numbers αn

I with |I| = j.

Then the second identity follows by expanding
∏
(1− αn

i ).

(2) We use the following fact: for an endomorphism φ ∈ End(V ) we have an identity of formal

power series

exp

( ∞∑
n=1

tr (φn;V ) · t
n

n

)
= det(id− t · φ;V )−1

Applying (1) we have

Z(X; t) = exp

Ñ
∞∑
n=1

2g∑
j=0

(−1)j · tr

(
πnX ;

j∧
VℓX

)
tn

n

é
=

2g∏
j=0

exp

( ∞∑
n=1

tr

(
πnX ;

j∧
VℓX

)
· t

n

n

)(−1)j

=

2g∏
j=0

det

(
id− t · πX ;

j∧
VℓX

)(−1)j+1

=

2g∏
j=0

∏
|I|=j

(1− t · aI)

(−1)j+1

Then the set of Pj ≜
∏
|I|=j(1 − t · aI) satisfies the property. Obviously Pj has coefficients in Z

since fX does.

(3) Note that
∏2g

i=1 αi = qg, we have

P2g−j =
∏
|I|=j

Å
1− qg

αI
· t
ã
=

∏
|I|=j

Å
− tq

g

αI

ã · Pj

Å
1

qgt

ã
= (−t)C

j
2g · qC

j
2g(2q−j)/2 · Pj

Å
1

qgt

ã
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16.2 The Hasse-Weil-Serre bound for curves (skip)

Then we can check that

Z(X, t) = Z(X,
1

qgt
)

■

16.2 The Hasse-Weil-Serre bound for curves (skip)

16.3 The theorem of Tate

Preliminaries

We first list some properties for Abelian varieties.

Proposition 16.9. Let X and Y be Abelian varieties over a field k.

If ℓ is a prime number, ℓ ̸= char (k). Then the map

Zℓ ⊗Hom(X,Y )→ Hom(TℓX,TℓY )

is injective, and has a torsion-free cokernel.

Proposition 16.10. Let X be an Abelian variety over a field k. Also, let ℓ be a prime number

with ℓ ̸= char (k). For any Gal(k̄/k)-stable submodule W of finite index in TℓX, then there is an

Abelian variety Y and an isogeny u : Y → X such that W is exactly the image of the induced

map

Tℓu : TℓY → TℓX

Proposition 16.11 (Zarhin’s trick). Let X be an Abelian variety over a field k. Then X4×(XD)4

carries a principal polarization.

Proposition 16.12. Up to isomorphism, an Abelian varieties has only finitely many direct factors.

The proof

We first do some reductions.

Proposition 16.13. The map

Tℓ : Zℓ ⊗Hom(X,Y )→ Hom(TℓX,TℓY )Gal(ks/k)

is an isomorphism if and only if the map

Vℓ : Qℓ ⊗Hom(X,Y )→ Hom(VℓX,VℓY )Gal(ks/k)

is an is an isomorphism.

Proof. By 16.9 the map Tℓ is injective and Coker(Tℓ) is torsion-free (hence free). Then Tℓ is an

isomorphism if and only if Coker(Tℓ) is free of rank 0, and further equivalently Coker(Tℓ)⊗Qℓ is

a 0th-dimensional vector space. Now the result follows from that Qℓ is flat over Zℓ. ■
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Proposition 16.14. If Z is an Abelian variety over k such that

Qℓ ⊗ End(Z)→ End(VℓZ)
Gal(ks/k)

is an isomorphism, then for any Abelian varieties X,Y over k, the map

Qℓ ⊗Hom(X,Y )→ Hom(VℓX,VℓY )Gal(ks/k)

is an is an isomorphism.

Proof. Let Z = X × Y . Then, there are decompositions

Qℓ ⊗ End(Z) = Qℓ ⊗ End(X)⊕Qℓ ⊗Hom(X,Y )⊕Qℓ ⊗Hom(Y,X)⊕Qℓ ⊗ End(Y )

End(VℓZ)
G = End(VℓX)G ⊕Hom(VℓX,VℓY )G ⊕Hom(VℓY, VℓX)G ⊕ End(VℓY )G

where G = Gal(ks/k). The result then follows immediately. ■

Now we consider a “finiteness condition”, which is denoted by Fin(X/k): up to isomorphism

there are finitely may Abelian varieties Y over k for which there is an isogeny X → Y of degree a

power of ℓ.

Lemma 16.15. Under the assumption Fin(X/k), for every sub-vector space W ⊆ VℓX that is

stable under Gal(ks/k), there exists an element u ∈ Qℓ ⊗ End(X) such that W = u(VℓX).

Proof. Let Wn = W ∩ TℓX + ℓn · TℓX. Then ℓn · TℓX ⊆ Wn ⊆ TℓX. Wn is then of finite index in

TℓX, and by 16.10 it is the image of Tℓvn : TℓXn → TℓX, where vn : Xn → X is an isogeny.

By the assumption Fin(X/k), there is a sub-sequence {ni} such that

Xn1
∼= Xn2

∼= · · ·

Fix an n ∈ {ni}, let wi be the composite

wi : X
v−1
n−−→ Xn

∼−→ Xni

vni−−→ X

Then wi is an element in Qℓ ⊗ End(X). Choose an element u ∈ Qℓ ⊗ End(X) be the limit of a

sub-sequence. Then u(VℓX) = (lim vn(VℓXn))⊗Qℓ = Qℓ ⊗ limWn =W . ■

Now we return to the proof of Tate conjecture, in fact, we will prove a more general version.

Theorem 16.16. Let X be an Abelian variety over an arbitrary field k, and let ℓ be a prime

number different from char (k). Assume that 16.15 is true for X and X2, then the representation

ρℓ : Gal(ks/k)→ GL(VℓX)

is semisimple and the map

Qℓ ⊗ End(X)→ End(VℓX)Gal(ks/k)

is an isomorphism.
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Proof. Suppose we have a Galois-stable subspace W ⊆ VℓX. By 16.15, there exists an endomor-

phism u ∈ Qℓ ⊗ End(X), such that W is exactly the image of u : VℓX → VℓX. We consider

the right ideal u · (Qℓ ⊗ End(X)), since Qℓ ⊗ End(X) is a semi-simple algebra, u · Qℓ ⊗ End(X)

is generated by an idempotent e. In addition, W = u(VℓX) = e(VℓX) and its complement is

(1− e)(VℓX). Obviously, (1− e)(VℓX) is also Galois-stable, hence ρℓ is semi-stable.

Let Z be the centralizer of End(X)⊗Qℓ in End(VℓX), let Y be the centralizer of Z. The double

centralizer theorem gives that Y = End(X) ⊗ Qℓ. Choose an element α ∈ End(VℓX)Gal(ks/k), it

suffices to show that α ∈ Y . Consider the graph of α

W ≜ {(x, ax)|x ∈ VℓX}

this is a Galois-stable subspace of VℓX × VℓX, and then by 16.15 there exists an element u ∈

End(X×X)⊗Qℓ such that W = u(Vℓ(X×X)). For any c ∈ Z, the matrix

Ç
c 0

0 c

å
∈ End(VℓX×

VℓX) commutes with End(X ×X)⊗Qℓ, and in particular, with u. Then

Ç
c 0

0 c

å
W ⊆ W . This

says that, for any x ∈ VℓX, (cx, cαx) ∈W . By the definition of the graph, α maps cx to cαx, and

then α commutes with c. Hence, α ∈ Y . ■

Proposition 16.17 (finiteness theorem). Now all we need is that the condition Fin(X/k) holds

when k is a finite field. Indeed, there is a stronger condition: there are only finitely many Abelian

varieties of the dimension g (up to isomorphism) over k.

Proof. By 16.11 and 16.12, it suffices to show that there are finitely many principal polarization

Abelian varieties over k. Note that they can be treated as the k-points of the stack Ag,d(k), this

is a stack of finite type over k, hence the k-points are finite. ■

Theorem 16.18 (the p-divisible group version). Let X and Y be Abelian varieties over a field of

characteristic p. Then the map

Φ : Zp ⊗HomAV(X,Y )→ Homp−div(X[p∞], Y [p∞])

is an isomorphism.

Corollary 16.19. Let X and Y be Abelian varieties over a finite field k of characteristic p. Then

the following are equivalent:

(a) X ∼ Y ;

(b1) for some ℓ ̸= p we have VℓX ∼= VℓY as representations of Gal(k̄/k);

(b2) for all ℓ ̸= p we have VℓX ∼= VℓY as representations of Gal(k̄/k);

(c1) X[p∞] ∼ Y [p∞];

(c2) MQ(X) ∼=MQ(Y ) as F -isocrystals;

(d) fX = fY ;

(e1) Z(X; t) = Z(Y ; t);

(e2) for all finite field extension k ⊆ k′ we have |X(k′)| = |Y (k′)|.
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Proof. The conditions (a)⇒ (b2)⇒ (b1) are clear.

Assume that (b1) holds true. Then there is a Galois-equivalent isomorphism h : VℓX → VℓY

for some ℓ ̸= p. Possibly after replacing h by ℓnh for some n, we may assume that h(TℓX) ⊆ TℓY ,

so that

U = {h ∈ HomGal(ks/k)(TℓX,TℓY )|h is injective}

is nonempty. It is ℓ-adically open in HomGal(ks/k)(TℓX,TℓY ). But Hom(X,Y ) ⊆ Zℓ ⊗Hom(X,Y )

is ℓ-adically dense, so by Tate theorem there is an element f ∈ Hom(X,Y ) such that Tℓf is

injective. This f is an isogeny.

Similarly (a) ⇐⇒ (c1) ⇐⇒ (c2). ■
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