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0 Notation and conventions

Remark 0.1. By a variety over a field k we mean a separated k-scheme of finite type which is

geometrically integral.

Definition 0.2. Let p be a prime number. We say that a scheme X has characteristic p if the
unique morphism X — Spec(Z) factors through Spec(F,) — Spec(Z). This is equivalent to that
for every open subset U C |X| we have p-1 =0 for 1 € Ox(U). We say X has characteristic 0
if X — Spec(Z) factors through Spec(Q) < Spec(Z), which is equivalent to that n € Ox (U)* for
all n € Z\{0} and open subset U C |X]|.

Proposition 0.3. If X — Y is a morphism of schemes, and Y has characteristic p (with p a prime

number or p = 0) then X has characteristic p, too.

Definition 0.4. Let p be a prime number. Let Y be a scheme of characteristic p. Then we have

a morphism Froby : Y — Y, called the absolute Frobenius morphism of Y, it is given by
(a) Froby is the identity on the underlying topological space |Y|;
(b) Frob%, : Oy — Oy is given on sections by f +— fP.

Remark 0.5. If 7 : X — S is a morphism of schemes, then the absolute Frobenius morphism

Frobx may be not an S-morphism.

Definition 0.6. Now we consider the relative Frobenius morphism. We define the scheme X (P/5)

to be the base change under the morphism Frobg

Now we have a natural morphism Fx/g, called the relative Frobenius morphism of X and defined

by the following commutative diagram

Frobx

Xi;\

xw/S) b,y

T ,gml lﬂ
S Frobg

— S

Example 1. Assume that S = Spec(R), and X = Spec(R[t1, - ,tm]/I) for some ideal I =
(f1i,--+,fn) Let fz-(p ) be the polynomial obtained from f; by changing all coefficients of f;
to the pth-power. More explicitly, if f; = > a;(IIt;), then fi(p) = a?(ﬂtl-). Then X®) =
Spec(R[t1, -+ ,tm]/IP) with I(P) = (fl(p), e ,f,S,p)). And the relative Frobenius morphism Fly g :
X — X® is given on rings by the homomorphism

Rlty,--- ’tm]/](P) — R[t1,-- ,tm]/I

WithrHrforreRandtht?
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Proposition 0.7. For any base change T' — S, there is an isomorphism
(X P/ p = (Xp)®/T)

Definition 0.8. We may define the morphism Froby- : Y — Y to be the nth iterate of the absolute
Frobenius morphism Froby : Y — Y. Similarly, there is an nth iterate of the relative Frobenius
morphism FQ/S : X = XPU/S,

Remark 0.9. If S = Spec(F,), where ¢ = p™. If X is an S-scheme, then the absolute Frobenius

morphism Frob% is precisely an S-morphism. Indeed,

Froby = Fy g
This is because Frobg here is exactly ids. We refer to mx = Frob’ as the geometric Frobenius
morphism of X.

More generally, suppose that S is a scheme over Spec(F,). If X is an S-scheme then by an

Fy-structure on X we mean a scheme Xo with an isomorphism of S-schemes
Xo®r, S =X

Then if X is given an F-structure, the geometric Frobenius morphism of Xo induces a geometric

Frobenius morphism of X.

1 Definitions and basic examples

We omit the definitions of group varieties and Abelian varieties, as well as their basic properties.

Proposition 1.1. Let X be a group variety over a field k. Then X is smooth over k. If we
write T'x . for the tangent space for the at the identity element, there is a natural isomorphism

Tx /= Tx ¢ ® Ox. This induces natural isomorphisms

%o = (\T¥..) ®k Ox

g

In particular, 25 /

w = Ox, where g = dim X.
Proof. Since X is a variety, the nonsingular points form a nonempty subset of X. Since the

property that being nonsingular is stable under translations, X must be nonsingular.

Let S = Spec(k[e]/(€?)), by the exercise I11.2.8 in this book, the element 7 € T} . corresponds
to an S-value point 7 : S — X, which reduce to e : Spec(k) — X modulo e.

A vector field on X is defined by an automorphism of Xg which reduce to the identity on X.
For any vector 7: S — X, let ((7) be the vector field defined by ¢z, that is, defined by

XS:XS ><5SMX5 ><5X5 ﬂ>X'5
Then 7 corresponds to a global element in I'( X, TX/k). That is, there is a k-linear map

Txe— T(X, Tx/k)

(©) F.P. (1800010614@pku.edu.cn) 2 2023.5
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Then these by replacing X with some other open sets we can obtain a homomorphism
a:Txe®r Ox = Txi

As this is a homomorphism between locally free Ox-modules of the same rank, it suffices to show

that « is surjective. If x € X is a closed point, the map a,(mod m,) is
Toe @1 k(z) = (Tx/1)e ®ox , k(2) = Tx s

which is exactly the map T'x . — T'x , induced by t,. Since the map restricting to stalks o, are

surjective, « is also surjective. |

Corollary 1.2. The only global vector fields on X are the vector fields defined by tz.

Proof. This follows from I'( X, Ox) = k. [ |

Theorem 1.3 (rigidity theorem). Consider a morphism f : X x Y — Z, and assume that X is
complete. If there is a point y € Y such that X x {y} maps to a fixed point z € Z, then f factors
through the projection py : X xY — Y.

Proof. Since the hypothesis holds when we extend k to k¥, we may assume that k is algebraically

closed, we work on the k-rational points.

Choose an affine open neighborhood U of z. Since X is complete, the projection py : X XY —
Y is a closed map. Thus, W £ py (f~1(Z/u)) is closed in Y. By the assumption, y ¢ W. Also,
for any y' ¢ W, f(X x {y'}) C U. Considering that U is affine and X x {y'} is complete, we
conclude that f(x X y') consists of a single point. As a result, f : X x (Y — W) — Z factors
through py _yw. Note that X x Y is irreducible, X x (Y — W) is dense in it. Therefore, f factors
through py everywhere. |

Proposition 1.4. Every morphism a : X — Y of Abelian varieties is the composite of a homo-

morphism with a translation.

Proof. Let O0x be the unit of X as a group. Suppose that the morphism sends Ox to y. After
composing o with the translation —y we may assume that «(0) = 0. Now it remains to show that

« is precisely a homomorphism of groups, that is, a(z + 2’) = a(x) + a(a’). Consider the map
0: XxX =Y (r,2)= alz+2)—alr) - al@)

then it is a morphism with ¢(X x {0}) = 0 = ({0} x X). By the rigidity theorem we have
p = 0. |

Corollary 1.5. (1) If X is a variety over a field k and Ox € X (k) then there is at most one

structure of an Abelian variety on X for which Ox is the identity element.
(2) The group structures on Abelian varieties are commutative.

Proposition 1.6. Any morphism from P! to a group variety is constant.

Proof. A more explicit description of this type of question could be got from section 1.3 from
Milne’s note. |

(©) F.P. (1800010614@pku.edu.cn) 3 2023.5
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Theorem 1.7. A rational map ¢ : V --» W from a normal variety V' to a complete variety

W is defined on an open subset U C V whose complement V' — U has codimension > 2.

Proof. Assume first that V is a curve. Then it remains to show that ¢ can be extended to
the whole V, that is, U = V.

Suppose that U is an open subset such that |y is a morphism. Consider the product
W x V, let Z be the closure of

{(p(@Q),Q): Qe U}

then we have a dominant morphism
U—-2Z->V

and the image of Z is closed in V since W is complete. Hence we must have Z — V is
surjective. Note that Z — V is a birational morphism of curves, with V' nonsingular, it
must be an isomorphism then. Inverting the isomorphism, we obtain a homomorphism
V27— Wextending U - 2 — W.

For the general case, let U be a subset on which ¢ is defined, and suppose that V — U
has codimension 1. Then there is a prime divisor Z C V — U. Since V is normal, the
corresponding local ring O is a DVR with fractional field k(V'). Note that the map ¢ defines
a morphism Spec(k(V)) — U — W, by the valuation of properness, we obtain a morphism
Spec(Oz) — W. This implies that ¢ has a representative defined on an open subset U’
such that U’ contains the generic point of Z. Thus ¢ can be defined everywhere. |

Lemma 1.8. Let ¢ : V --» G be a rational map from a nonsingular variety to a group
variety. Then either ¢ is defined on all of V' or the points where it is not defined form a

closed subset of pure codimension 1 in V' (i.e., a finite union of prime divisors).

Proof. Define a rational map ® : V xV --» G via (z,y) — o(x)p " (y). We first prove that
® is defined at (x,z) if and only if ¢ is defined at z.

Clearly if ¢ is defined on x, then @ is defined on (z,z) and ®(z,x) =e.

Conversely if ® is a morphism defined at (x,x), then by choosing the open neighborhood
{z} x V on where ® is defined, there must be a subset U C V' (not necessarily containing
x) on which ¢ is defined.

For u € U, the homomorphism ¢(z) = ®(z,u)p(u) expands ¢ at x. Thus ® is defined at
(x,z) if and only if ¢ is defined at x.

The rational map ® defines a map
P*: Og,e = k(V xV)

Note that if @ is defined on (z,x), then ® sends it to e € G. Thus, ® is defined at (z,x) if
and only if
Im(OG,e) - OVXV,(x,x)

Note that the stalk Oy .y, () is defined by

{f € k(V x V)|there is no prime divisor Z such that (z,z) € Z and vz(f) < 0} U {0}

(©) F.P. (1800010614@pku.edu.cn) 4 2023.5
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we have ¢ is not defined over x if and only if there exists f € Im(Og ) such that vz, (f) < 0.
We identify these prime divisors as a subset of V, its closure is obviously a finite union of

prime divisors on which ¢ is not defined on. |

Corollary 1.9. A rational map « : V --» A from a nonsingular variety to an Abelian

variety is defined on the whole of V.
Proof. This is the consequence of the above two results. |

Theorem 1.10. Let o : V xW — A be a morphism from a product of nonsingular varieties
to an Abelian variety, and assume that V' x W is geometrically irreducible (if we further

assume that V' or W is complete, then it is a special case of the rigidity theorem). If
a(V x{wo}) = {ao} = a({vo} x W)
for some ag € A(k), vo € V(k), wo € W(k), then
a(V x W) = {ao}
Proof. |

Corollary 1.11. Every rational map o : G --» A from a group variety to an Abelian
variety (now « is a morphism) is the composite of a homomorphism h : G — A with a

translation.

Theorem 1.12. If two Abelian varieties are birational equivalent, then they are isomorphic

as Abelian varieties.

Proof. The birational map ¢ : A — B is actually defined on the whole A and is surjective.
Hence it is an isomorphism of varieties. By composing a translation the new morphism
maps 0 to 0, this morphism is a homomorphism of groups. Then we obtain an isomorphism

of Abelian varieties. n
Proposition 1.13. Every rational map A' --» A or P! --5 A is constant.

Proof. Note that « is actually a morphism. After composing a translation we may suppose
that «(0) = 0 and then « is a homomorphism, that is, a(a+ a’) = a(a) + a(a’). Therefore,
« is an additive morphism on A'.

But A! — {0} is also a group variety, there exists a translation f = —a(1) defined on
A such that o « is a group homomorphism mapping 1 to 0. Hence a(zy) — a(l) =
a(z) + a(y) — 2a(1) for all 2,y € Al — {0}. This implies that a((x — 1)(y — 1)) = 0 for all
z,y € A — {0}. Obviously it infers that o = 0. |

Definition 1.14. We call that a variety V' with dimension n is unirational if there is a dom-
inating rational map A™ --» V; equivalently, k(V') can be embedded into k(Xi, -, X,).

A variety V over an arbitrary field £ is said to be unirational if Vja is unirational.

Proposition 1.15. Every rational map o : V --» A from a unirational variety to an

Abelian variety is constant.

(©) F.P. (1800010614@pku.edu.cn) 5 2023.5
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Proof. The composite A® --» V --» A induces a rational map 8 : P! x P! x ... x P! -—5 A,
and then the rational map can be extended to the whole space.

By the previous results, there exists morphisms ; : P* — A such that S(z1,--- ,zq) =
> Bi(x;). Then the morphism is constant. [ |

2 Line bundles and divisors on Abelian varieties

In this section we prove that all Abelian varieties are projective.

2.1 The theorem of the square
Remark 2.1. If L is a line bundle on X XY, then we define L, = i*L, where i : X, = X x {y} —
X xY.

Theorem 2.2. Let X and Y be varieties. Assume that X is complete. Let L and M be two line
bundles on X x Y. If for all closed points y € Y we have L, = M, as sheaves on X, then there
exists a line bundle NV on Y such that L = M ® pj-N.

Proof. Since L, ® M, ! is the trivial bundle and the variety X, = X x Spec(k(y)) — Spec(k(y)) is
complete, H(X,, L, ® My_l) = k(y). Thus, by Grauert’s result, which can be found in this book
I11.12.9, the sheaf (py).(L ® M~1) is locally free of rank one.

We shall prove that the pullback (py)*(py)«(L ® M~1) is isomorphic to L ® M ~! through the
canonical morphism

a:(py) (py)s(LoM Y - LeoM!

We first look at its property by restricting on X,. The induced map is
I'(Xy, 0x,) @k Ox, = X,y
which is an isomorphism since X, is complete.

By Nakayama lemma and comparing the rank, we conclude that « is an isomorphism. |

Corollary 2.3 (See-saw principle). With the same assumptions of above, if additionally we assume
that L, =2 M, for some points z € X then L = M.

Proof. We have L =2 M ® p;, N. Over Speck(x) x Y this induces that (pj,N), = N is trivial. W

Next we prove the theorem of the cube.
Lemma 2.4. Let X and Y be varieties, with X complete. For a line bundle L on X x Y, the set
{y € Y|L, is trivial} is closed in Y.
Proof. Note that X, is complete. Thus, Ly is trivial if and only if L,(Xy) and L, 1(X,) are both

non-zero (see this link). Hence

{y € Y|Ly is trivial} = {y € Y[hO(Ly) > 0} N {y € Y[n*(L, ") > 0}

(©) F.P. (1800010614@pku.edu.cn) 6 2023.5
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2.1 The theorem of the square

But the functors y — h9(L,) and y hO(Ly_ 1) are upper-continuous on Y, so the two sets of the
right side are closed. |

Proposition 2.5. Let X be a complete variety over a field K, let Y be a k-scheme, and let L
be a line bundle on X x Y. Then there exists a closed subscheme Yy — Y which is the maximal

subscheme of Y over L which is trivial, i.e.,

(i) the restriction of L to X x Yp is the pull back (under py) of a line bundle on Yj

(i) if ¢ : Z — Y is a morphism such that (idx x ¢)*L is the pullback of a line bundle on Z
under p?, then ¢ factors through Yj.

Proof. This is a trivial consequence of the existence of the Picard scheme, which we will discuss
in section 6. Let Y — Picx/; be the map corresponding to L, then Yp is simply the fibre over the

zero section of Picy . |

Lemma 2.6. Let X be a complete variety, and let L be a locally free sheaf on X . If Lg =
(XKg — X)*L becomes trivial on X for some field K D k, then L is trivial on X.

Proof. We reuse the result that an invertible sheaf is trivial if and only if both it and its dual have
nonzero global section. Then the result follows obviously from that
dimK F(XK, LK) = dimK(F(X, L) Ok K) = dimk F(X, L)
|

Theorem 2.7. Let X and Y be complete varieties over k£ and let Z be connected, locally Noethe-
rian k-scheme. Consider points z € X and y € Y, and let z be a point of Z. If L is a line bundle
on X XY x Z whose restrictions to {x} x Y x Z, X x {y} x Z and X xY x {z} are trivial, then

L is trivial.

Proof. |

Remark 2.8. The analogous statement for line bundles on a product of two complete varieties is
generally false. More precise, suppose X and Y are complete k-varieties and L is a line bundle
on X x Y. If there exists points v € X and y € Y such that L, and L, are trivial, it is not true

that L is generally trivial.

Theorem 2.9 (Theorem of the Cube). Let L be a line bundle on X. Then the line bundle
O(L) = piosL @ pioL ™ @ pisL ™ @pis L™ @ piL @ psL @ pyL*
on X x X x X is trivial.

Proof. Note that the restriction of L to {0} x X x X is trivial. [ |

Corollary 2.10. Considering the morphism (f,g,h) : Y — X x X x X from a scheme Y to a
product of three Abelian varieties. Then we have that the bundle

(f+g+h)'Le(f+9) L '@(f+h) L@ (g+h)' L e ffL& ¢ L h*L

on Y is trivial.

(©) F.P. (1800010614@pku.edu.cn) 7 2023.5
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Corollary 2.11 (Theorem of the Square). Although 2.7 has no square version, we can obtain a

square analogue of 2.10. This result is mainly why we introduce the theorem of cube.
By taking f =id, g =2, h=vy: X — X, then for all z,y € X(k),
th,LO®L=tL®tL
Corollary 2.12. If L is a line bundle on an Abelian variety X. The map ¢y, : X (k) — Pic(X)
given by x ~ [t:L ® L~!] is a homomorphism.

Corollary 2.13. By making f =n, g=1, h=—1: X — X, we can obtain another consequence
of 2.7.

For every line bundle L on X, we have

n(n+1) n(n—1)
nfL=L 2 @(-1)"L 2

Definition 2.14. We say that a line bundle L is symmetric, if (—1)*L = L. Asaresult, n*L =2 .

Similarly, we can define anti-symmetric line bundle as (—1)*L = L~!. At this time, n*L = L.

2.2 Projectivity of Abelian varieties

Definition 2.15. Let L be a line bundle on an Abelian variety X. On X x X we define the
Mumford line bundle A(L) by

AML)=m*LopiL ' @ ps L1

Note that the restriction of A(L) on {z} x X is t!L ® L~!.

We define K(L) as the maximal closed subscheme of X such that A(L)|xxgr) is trivial on
X x{y} for any y € K(L). As aresult, A(L)|x () could be written as p5M for some line bundle
M on K(L).

Note that K (L) is compatible with the base change.

Lemma 2.16. Let T be a k-scheme and x : T — X a T-valued point of X. As usual, define Lp
to be the pull-back of L under the morphism X — X.

1. The morphism x factors through K (L) if and only if tXLr ® L;l is a pull-back of a line
bundle on T

2. If t: Ly @ L' = ph M, then M = 2*T.
Proof. 1. We rewrite the composite
Xr & Xp o X

as

Xp D0 o x I X

Thus, t¥ Ly = (idx x x)*m*L.

(©) F.P. (1800010614@pku.edu.cn) 8 2023.5
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Note that we can also rewrite
Xr— X

as

Xp o v oo x P x

We have Ly = (idx x z)*piL.

Then
tilr @ Lyt = (idx x 2)*[A(L) ® p3L] = (idx x 2)*A(L) ® (pya*L)

Recall that A(L)|xxx could be written as psM for any K C K(L). Thus, = factors through
K (L) if and only if p5 M for some line bundle M on T

0,
2. We just compute M through o : T m

LY.

X7. We know that M = o*ppM = o (t;Lr ®

Note that the composite
T Xp o Xp— X

is exactly the morphism x. Thus, a*t; Ly = z*L.

Also, the composite
T Xp 25 X

is constant. Then the pull-back of L™! factors through a point. Note that L' is a line bundle,
the pull-back of L' is trivial. Thus, of‘L;1 is trivial. Therefore, M = z*T. |

From the prove of the above two statements, we can obtain a more interesting result.
Proposition 2.17. We have A(L)|xx k(1) = Oxxr(L)-

Proposition 2.18. The subscheme K (L) is a subgroup scheme of X.

Proof. The first statement of 2.16 offers us a way to define the group structure on K(L)(T') for
any k-scheme T'. The theorem of square tells us that this group structure is exactly compatible

with the original group structure. |

We will prove the following fact we will use here in the next section: let X be an Abelian
variety, for any closed subgroup scheme Y C X, let Y be the connected component contained
the origin, then Y0, < Y < X is a Abelian subvariety of X.

Lemma 2.19. If L is ample then K (L) is a finite group scheme.

Proof. Obviously we can assume that k is algebraically closed. Set Y = K(L)° ; C X. Let L be
the restriction of L to Y. The line bundle A(L’) is then trivial on Y x Y. Pulling back through

the morphism Y’ 14,719, v ¥ we can obtain a trivial line bundle L/ ®(-1)*L" on Y.

Note that (—1)*L’ is also ample, thus L' ® (—1)*L’ is ample. Hence, every invertible sheaf of
Y is generated by the global section. Thus, dim(Y) = 0. [ |

(©) F.P. (1800010614@pku.edu.cn) 9 2023.5
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Proposition 2.20. Let X be an Abelian variety over an algebraically closed field k. Let f: X —
Y be a morphism of k-varieties. For x € X, let C,. denote the connected component of the fibre
over f(x) such that z € C,, and write F, for the reduced scheme underlying C,. Then Fj is an
Abelian subvariety of X and F, = t,(Fp) = x + Fj for all z € X (k).

Proof. Consider the morphism ¢ : X x F, — Y which is the composite
XxF, - XxXDxdy

Clearly ({0} x Fy) = {f(x)}. Since Fj is connected and complete, the Rigidity Theorem implies
that ¢ maps the fibres {z} x F, to a point. Therefore, f(z + x) = f(z + F;) for any 2’ € C,. In
particular, let z = y — « we find that f(y —x + Fy) = f(y) for any z,y € X (k).

Putting y = 2z, * = 0 we obtain f(z + Fy) = f(z), which implies that z + Fy C F,. Putting
y =0, x = z we obtain that —z + F, C Fy. This shows that F, = z + Fj.

In particular, we have a + Fy = F, = Fj for any a € Fy. Therefore, Fj is a reduced subgroup

scheme in X, and then is a Abelian subvariety. |

Corollary 2.21. Suppose that X is a simple Abelian variety, then every morphism from X to

another k-variety is either constant or finite.

Remark 2.22. Let D be an effective divisor of X, that is, all the coefficients of D are positive.
Let L = Ox (D) be the corresponding line bundle. We claim that linear system |2D| has no base-
points, i.e., the sections of L®? define a morphism of X to projective space. To see this we have to
show that for every geometric point y € X there exists an element E € |2D| that does not contain

y. Now the theorem of square tells us that the divisors of the form
tD+t* D

belong to |2D|.

For any given y, it is easily to see that we can find x such that y ¢ Supp(t:D +t* D). As a
result, there is a morphism from from X to P(I'(X, L®?)).

Also, note that we have a morphism
X —>P=2D|, z—t.D+t", D

Definition 2.23. Assume that & is algebraically closed. For an effective divisor D on X we define
the reduced closed subscheme H (D) C X by

H(D)(k) = {z € X(k)|t:D = D}
Clearly, this is a subgroup scheme.

Lemma 2.24. Assume that k is algebraically closed. Let L be an effective line bundle on the
Abelian variety X. Let f : X — P" be the map sending X to a projective space, as referred in the
above remark. Let I be the set defined in 2.20 corresponding to f. Then H(D)? = Fy = K(L)°

red*
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Proof. Let x € Fy. Then fot, = f. Hence, if s € I'(X, L®?), then s and t*s have the same
divisor. Let ¢ be a section of L with divisor D. This gives t:D = D, i.e., x € H(D). Since Fy is
connected, we find that Fy C H(D)".

Next, obviously, H(D)® C K(L)® ,.

To prove K (L)%, C Fy, write L’ for the restriction of L to K (L)% ;. We have to show that f
sends z € K (L)%, to f(0). It is sufficient to show that L’ is trivial. This is trivial, since we find
that L is ample. As illustrated in the proof of 2.19, (—1)*L’ ® L' is a trivial line bundle. But, L’

and (—1)*L’ both have nontrivial global elements, then L’ is trivial. [ ]

Remark 2.25. In the next section, we will prove that there exists a quotient X' = X/ Fy, which is
again an Abelian variety. The Stein factorisation of the morphism f is given by X — X' — P"
and L is a pull-back of a bundle on X'.

Proposition 2.26. Let L be a line bundle on an Abelian variety X which has a non-zero global

section. If K(L) is a group scheme then L is ample.

Proof. We assume that k = k. Let D be the divisor corresponding to the given section.
Recall that Fy is an Abelian variety, it consists of a single point.

Then 2.24 tells us that f is quasi-finite. Since f is also proper, it is finite. By general theory,
L is ample. |

Corollary 2.27. Let D be an effective divisor on an Abelian variety X over an algebraically
closed field. Set L = Ox (D). Then the following are equivalent:

1. H(D) is finite;

2. K(L) is finite;

3. L is ample.
Definition 2.28. A line bundle L is said to be non-degenerate if K (L) is finite.

An effective line bundle is non-degenerate if and only if it is ample.

Theorem 2.29. An Abelian variety is a projective variety.

Proof. We first prove for the case k = k. Choose a quasi-affine open subset U C X such that
X\U = U,e; Di for certain prime divisors D;. Set D = ) D;. It suffices to find D such that
H(D) is finite. We find D such that 0 € U. Then it is easy to find that H(D) C U through the
definition of H (D). But H(D) is proper, then H(D) is finite.

For arbitrary k, we first choose an ample divisor D C Xz. Note that locally D represents a free
module of rank 1 with glueing data in k*, we can expand k by creating these number to obtain

a line bundle defined on a finite extension K /k, which induces D. If K/k is Galois, then we can

construct
D= Y “D
oGal(K/k)
This is an ample divisor defined over k. If K/k is purely inseparable such that o™ € k for all
a € K, then p™ - D is an ample divisor defined over X. |
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2.3 Projective embeddings of Abelian varieties

Theorem 2.30. No Abelian variety of dimension g can be embedded into P?9~!. No Abelian

variety of dimension g > 3 can be embedded into P29,

Proof. |

3 Basic theory of group schemes

3.1 Definitions and examples

Proposition 3.1. Let G be a scheme over a base scheme S. Then the following data are equivalent:
(i) the structure of an S-group scheme on G
(ii) a group structure on the sets G(T') = Homg(T, &), functorial in 7' € Schg.

For homomorphisms we have a similar assertion: if G; and G9 are S-group schemes then the

following data are equivalent:

(i) a homomorphism of S-group schemes f : G; — G»

(ii) group homomorphisms f(7') : G1(T) — G2(T), functorial in 7' € Schg.
Example 2. (1) Let S be a base scheme, the additive group over S, denoted by G, g, corresponds
to the functor T'+— T'(T, Or) : Sch,g — Set.

Gq,s can be represented by the scheme Spec(R][z]).

(2) The multiplicative group, denoted by G, g, corresponds to the functor 7" +— I'(T, Or)* :
Sch g — Set.

As a scheme, G,, = Spec(Oglx,z71]).

(3) The nth roots of unity p, g corresponds to the functor

T — {the elements in I'(T", Or)* whose order divides n}

The group scheme can be represented as Oglz,z7!]/(z" — 1), it is a closed subgroup scheme
of Gy 5.

(4) Suppose that char (S) = p, where p is a prime number. Consider the closed subscheme
apn.s C G,g defined by the ideal (zP"), that is, ayn s = Spec(Oglz]/(zP")).

If T is a S-scheme, an g sends T to {f € ['(T, Or)|fP" = 0}.

(5) Let M be a group. Let Mg = @,,S, it has a group structure induced by the group
structure on M. As a functor, let Mg(T) be the set of locally constant functions from |T'| to M.

(6) (semi-direct product) Let N and @ be two group schemes over a base scheme S. Consider
the functor
M(N) : SCh/S —-Gr, T AutT(NT(: N Xg T))
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Suppose that we are given a homomorphism of group functors p : @ — Aut(N), then we may
define the semi-direct group scheme N x, Q: the underlying scheme is just N xg (), the group

structure is defined by

(n,q) - (n',q') = (n-p(g)(n'),q-q)

(7) Let S = Spec(R) be an affine base scheme. Suppose that G = Spec(A) is an S-group
scheme which is affine as a scheme. Then the morphism m,¢ and e giving G its structure of a

group scheme correspond to R-linear homomorphisms
m:A— AR A
1A A
e:A— R
with a number of identifies induced by the definition of group schemes.

A unitary R-algebra equipped with maps 71, € and 7 satisfying these identifies is called a Hopf
algebra over R. The category of affine group schemes over R is anti-equivalent to the category of

commutative R-Hopf algebras.

3.2 Elementary properties of group schemes
Proposition 3.2. (1) An S-group scheme G is separated if and only if the unit section e : S — G
is a closed immersion.

(2) If S is a discrete scheme then every S-group scheme is separated.
Corollary 3.3. Every group scheme over a field k is separate.

Definition 3.4. (1) Let G be an S-group scheme with unit section e : § — G. Define eq =

e(S) € G (a subscheme of G) to be the image of immersion e.

(2) Let f: G — G’ be a homomorphism of S-group schemes. Then we define the kernel of f
to be the subgroup scheme Ker(f) = f~!(eq) of G.

Definition 3.5. Let GG be a group scheme over a field k, it is separated over k. The subscheme

eg is a single point.

Assume that G is locally of finite type over k, then the scheme G is locally Noetherian, hence
locally connected. Let GV be the connected component of e, it is an open subscheme of G. We

call G° the identity component of G.

Proposition 3.6. Let G be a group scheme, locally of finite type over a field k.

(1) The identity component G° is an open and closed subgroup scheme of G which is geomet-

rically irreducible.

(2) The following properties are equivalent:

e (¢ ®; K is reduced for some perfect field K D k.

e the ring Og . ®j, K is reduced for some perfect field K O k.
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e (G is smooth over k.
e GY is smooth over k.

e (G is smooth over k at the origin.
(3) Every connected component of G is irreducible and of finite type over k.

Proof. (1) If G° is geometrically connected and (3) holds true, then G is obviously geometrically
irreducible. We may show that G° is geometrically connected in the following. More generally, we
shall prove that if X is a connected k-scheme, locally of finite type, that has a k-rational point
x € X(k) = Hom(k, X) then X is geometrically connected.

Let k be an algebraic closure of k. First we show that the projection p: Xz = X x; k — X is
open and closed. Suppose that {V,,} is an open covering of X, then {V,, z} covers Xj. Then the
projection Xz — X is open (resp. closed) if each V, ; — V, is open (resp. closed). Hence we may
assume that X = Spec(A) is affine and of finite type over k. Then the result follows immediately.

Suppose that nonempty subsets U; and Us are both open and closed in Xj. Since X is
connected, p(Uy) = p(Usz) = X. The unique point z lying over x € Hom(k, X) is then contained
in Uy N Us. Hence Uy N Uz is nonempty and then Xy is connected.

(2) For a scheme X of finite type over k, we have the following properties (see Illusie theorem
3.7): If X is smooth, then X is regular, hence is reduced (because any regular local ring is a
domain); if k is perfect and X is regular, then X/k is smooth. For the second property, there is a

more suitable version at this case : https://stacks.math.columbia.edu/tag/056V.
(3) u

Theorem 3.7 (Catier theorem). Let G be a group scheme, locally of finite type over a field & of
characteristic 0. Then G is reduced and smooth over k. (By the above proposition if G is reduced
then G is smooth).

Proof. |

3.3 Cartier duality

Definition 3.8. Let G be a commutative and finite local free over S. Let A = m,O¢. 1t is a finite
locally free sheaf as Hopf Og-algebra. We define a new sheaf AP = Homp, (A, Og) with a natural
Hopf Og-algebra structure.

Theorem 3.9 (Catier duality). Let G : G — S be a commutative S-group scheme which is finite
and locally free over S. Write A = m,0g. Then GP = Spec(AP) is a commutative, finite locallt

free S-group scheme which represents the contravariant functor

Hom(G, Gm,S) : SCh/S —-Gr Tw— HomGSch/T (GT, ij)

GDD

The homomorphism — G is an isomorphism.
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3.4 The component group of a group scheme

Remark 3.10. We use mo(X) to represent the topological connected components of X, and wo(X)

for its scheme-theoretic analogue.

Definition 3.11. If X/k is a scheme locally of finite type then wy(X) will be an etale k-scheme,
and X — wo(X) is a covariant functor. Further, if X is a group scheme, then wy(G) inherits a

natural structure of group scheme, which is called the component group scheme of G.

Definition 3.12. Let k be a field with a separable algebraic closure k, and write I'y, = Gal(ks/k).
By a I'i-set we mean a set Y equipped with a continuous left action of I'y, the continuity assump-

tion here means that all I'j-orbits in Y are finite.

Remark 3.13. Let S = Spec(k) for a field k. Let Et;g be the categories of etale schemes over S.
Note that every etale scheme X over S can be represented as the union of connected etale schemes
X = [l,crSpec(La) where Ly is a finite separable extension of k. Then there is an equivalence
of categories

Et, =, (Dy-sets)

associating to X € Etj, the X (ks) with its natural T'y-action. To obtain a quasi-inverse, write a
[y-set Y as a union of orbits, say Y = [[,c;(Tk - ya), let Lo 2 k be the finite extension corre-
sponding to the open subgroup stab(y,) C 'y, and associate to 'Y the S-scheme [],; Spec(La).

Proposition 3.14. Let k C kg and T'y, = Gal(ks/k) be as above. Associating to an etale k-group

scheme G the group scheme G(ks) with its natural I'g-action gives an equivalence of categories
(etale k-group schemes) — (I'y-groups)

Remark 3.15. The proposition tells us that every etale k-group scheme G is a k-form of a constant

group scheme.

In other words, let M = G(ks). We consider it as an abstract group. Then the constant group
scheme My /k. The proposition tells us that My ® ks = Gy, .

Proposition 3.16. Let X be a scheme, locally of finite type over a field k. Then there is an etale
k-scheme wp(X) and a morphism ¢ : X — w(X) over k such that ¢ is universal for k-morphisms
from X to an etale k-scheme. The morphism ¢ is faithfully flat, and its fibres are precisely the

connected components of X.

Proof. Looks easy to understand, but the proof needs to be created. |

Proposition 3.17. Let G be a group scheme, locally of finite type over a field k. In this case, ¢

is a homomorphism.

4 Quotients by group schemes

We only list the results in this section.
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4.1 Categorical quotients

4.1 Categorical quotients

Definition 4.1. (1) Let G be a group scheme over a basis S. A left action of G on an S-scheme
X is given by a morphism p : G xg X — X such that the composition

X 2§ xg X SN o x B x

is the identify on X, and such that the diagram

GXSGXSXM)GXSX

mXidxl lp

GxgX —2 X

is commutative. Note that p induces a left action of G(T") on X (7).

(2) Given an action p as in (1), we define the graph morphismtobe ¥ = ¥, : GxgX — X xgX
sending (g,z) — (g - x,z). The action p is said to be free, or set-theoretically free if ¥ is a
monomorphism of schemes, and is said to be strictly free, or scheme-theoretically free, if ¥ is an

immersion.

(3) If T is an S-scheme and = € X (T') then the stabilizer of x, denoted by G, is the subgroup
scheme of Gp that represents the functor 7"+ {g € G(T")|g - © = x} on T-scheme T".

Proposition 4.2. An action p is free means that for all 7" and all z € X (T) the stabilizer G, is

trivial.

Example 3. Let G be a group scheme over S and H C G is a subgroup scheme then the group

law gives an action of H on GG. One can check that the action is strictly free.

More generally, if f : G — G’ is a homomorphism of group schemes then we get a natural

action of G on G’. The action is free if and only if Ker(f) is trivial.

Definition 4.3 (categorical case). Let C' be a category with finite products. Let G be a group
object in C. Let X be an object of C.

(a) A left action of G on X is a morphism p: G x X — X that induces, for every object T', a
left action of the group G(T") on the set X (T).

(b) Let an action of G on X be given. A morphism ¢ : X — Y in C is said to be G-invariant if
gop=gqoprx :GxX — Y. By the Yoneda lemma this is equivalent to the requirement that for
every T € C, if z1,x9 € X(T) are two points in the same G(T')-orbit then ¢(z1) = ¢(x2) in Y/(T).

(c) Let f,g be two morphisms from W to X in C. We say that a morphism h: X — Y is a
difference cokernel of the pair (f,g) if ho f = ho g and if h is universal for this property.

(4) Let p: Gx X — X be a leaf action. A morphism ¢ : X — Y is called a categorical quotient
of X by G if ¢ is a difference cokernel for the pair (p,prx) : G x X = X. In other words, ¢ is

G-invariant, and every G-invariant X — Y’ factors through q.

Remark 4.4. To study q : X — Y, we can take Y to be our base scheme. Indeed, if q is a
categorical quotient of X by G, then Gy = G xgY acts on X and q is also a categorical quotient
of X by Gy in the category Schy . The action of G on X over S is (strictly) free if and only if
the action of Gy on X overY is (strictly) free.
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4.2 Geometric quotients, and quotients by finite group schemes

4.2 Geometric quotients, and quotients by finite group schemes

Proposition 4.5 (When T is finite and X is affine). Let I" be a finite group acting on an affine
scheme X = Spec(4). Let B = Al C A be the subring of I-invariant elements, and set Y =

Spec(B).
(1) The natural morphism ¢ : X — Y induces a homeomorphism I'\ | X| = Y.
(2) The map ¢* : Oy — ¢.Ox induces an isomorphism Oy ~ (¢.Ox).

(3) The ring A is integral over B; the morphism ¢ : X — Y is quasi-finite, closed and surjective.

Definition 4.6. Let p: G xg X — X be an action of an S-group scheme G on an S-scheme X.

Consider the continuous
lprx| |G xs X| =X, |p|: |G xs X[ —|X]|

Given P,Q € |X|, write P ~ @ if there a point R € |G xg X| with [prx|(R) = P and |p|(R) = Q.

Then ~ is an equivalence relation on |X]|.

Let |X|/ ~ be the set of G-equivalence classes in | X|, equipped with the quotient topology.
Write ¢ : |X| — |X|/ ~ for the canonical map. Let V be an open subset of |X|/ ~ and U its
preimage. If f € ¢.Ox (V) = Ox(U), then we form the elements prg((f) and p*(f) in Ogxsx (G x5
U). We say that f is G-invariant if prg(( f) = p*(f). The G-invariant functions f form a subsheaf
of rings (¢:O0x)% C qxOx on |X|/ ~. We define

(G\X)rs = (|X|/ ~ (Q*OX)G)

and write ¢ : X — (G\X),s for the natural morphism of ringed spaces.

If (G/x)s is a scheme and ¢ is a morphism of schemes then we say that it is a geometric
quotient of X by G. If moreover for every S-scheme T we have that (G\X);s Xs T = (G7\X7)rs

then we say that (G\X)s is a universal geometric quotient.

Proposition 4.7. In the category RS\g, ¢ is a difference cokernel of the pair (p,prx): Gxs X =
X. Consequently, if a geometric quotient of X by G exists, that is, (G\X)s is a scheme and ¢ us

a morphism of schemes, then ¢ is a categorical quotient in Schys.
Lemma 4.8.

Theorem 4.9 (Quotients by finite group schemes). Let G be a finite locally free S-group scheme
acting on an S-scheme X. Assume that for every closed point P € | X| the G-equivalence class of

P is contained in an affine open set.

(1) The quotient Y = (G\X),s is an S-scheme, which therefore is a geometric quotient of X
by G. The canonical morphism ¢ : X — Y is quasi-finite, integral, closed and surjective. If S is
locally Noetherian and X is of finite type over S then ¢ is a finite morphism and Y is of finite
type over S, too.

(2) The formation of the quotient is compatible with flat base change. In other words, let
h:S"— S be a flat morphism, then Y xg 5" = (G x5 S"\X x5 5 )s.
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(3) If G acts freely then ¢ : X — Y is finite locally free and the morphism
GxgX—>XxyX

induced by ¥ = (p,prx) is an isomorphism. Moreover, in this case Y is a universal geometric

quotient.

4.3 FPPF quotients

Definition 4.10. Let S be a scheme. We write (S)pppr for the big fppf site of S. Write FPPF(S)
for the category of sheaves on (S)pppr. Denote by ShGr /g and ShAb g the categories of sheaves
of groups, respectively sheaves of Abelian groups, on (S)pppr. The category ShAb /s is Abelian
but the other is not.

Definition 4.11. Let G be an S-group scheme acting, by p: G xg X — X, on an S-scheme X.
We write (G\X)gppt, or simply G\ X, for the fppf sheaf associated to the sheaf

T— G(T\X(T)
If G\ X is representable by a scheme Y then we refer to Y as the fppf quotient of X by G.

Proposition 4.12. Let G be an S-group scheme acting freely on an S-scheme X. Suppose
that the fppf sheaf (G\ X )gpr is representable by a scheme Y. Write ¢ : X — Y for the canonical
morphism. Then ¢ is an fppf covering and the morphism ¥ : G xgX — X Xy X is an isomorphism.

This gives a commutative diagram with cartesian squares

GxgX = X xy X 2 X

- [

Proof. By the construction of fppf quotient, the morphism ¢ : X — Y is an epimorphism of fppf
sheaves. Then ¢ is an fppf covering. As functors, G xg X — X Xy X is an isomorphism, hence

by Yoneda lemma, ¥ is an isomorphism. |

Remark 4.13. In the situation of the proposition above, if (G\X )ppt is representable by a scheme,
then the action of G on X is strictly free. Indeed, X Xy X is a subscheme of X xg X.

Definition 4.14. We say a property P of morphisms f of schemes is fppf local on the target if

the following two conditions hold:

e P is stable under base change.

e if the base change g : S — S is an fppf covering then P(f) <= P(f’), where f is the base
change of f.

Proposition 4.15. Let P be a property of morphisms of schemes which is local on the target
for the fppf topology. If ¢ : X — Y is an fppf quotient of X under the free action of an S-group

scheme G, then
q : X — Y has the property P < pry : GXgX — X has the property P < 7 : G — S has the property P

where moreover the last implication is an equivalence if X — S is an fppf covering.
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Theorem 4.16 (Raynaud). Let G be an S-scheme acting on an S-scheme X.

(1) Suppose that there exists an fppf quotient Y of X by G. Then Y is also a geometric point

of X in the category of ringed spaces.

(2) Assume that X is locally of finite type over S, and that G is flat and locally of finite
presentation over S. Assume further that the action of G on X is strictly free. If there exists a
geometric quotient Y of X by G then Y is also an fppf quotient. Thus, the quotient morphism
q : X — Y in the category of ringed space is an fppf morphism and Y is a universal geometric

quotient.

We have the following relations:

fppf quotient == universal geometric quotient == universal categorical quotient

under the assumptim “ “

geometric quotient =———————= categorical quotient

Theorem 4.17. Let G be a proper and flat group scheme of finite type over a locally Noetherian
basis S. Let G xg X — X define a strictly free action of G on a quasi-projective S-scheme X.
Then the fppf quotient G\ X is representable by a scheme.

Theorem 4.18. Let G be a flat group scheme of finite type over a locally Noetherian base scheme
S. Let H C G be a closed subgroup scheme which is flat over .S. Suppose that we are in one of

the following cases:

1. dim(5) < 1.
2. (G is quasi-projective over S and H is proper over S.

3. H is finite locally free over S such that every fibre Hy; C G is contained in an affine open
subset of G.

Then the fppf quotient sheaf G/H is representable by an S-scheme. If H is normal in G, then
G/H has the group structure of an S-group scheme such that ¢ : G — G/H is a homomorphism

of group schemes.

Corollary 4.19. Let X be an Abelian variety over a field k. If H C X is a closed subgroup
scheme then there exists an fppf quotient ¢ : X — Y = X/H. Y is again an Abelian variety.

4.4 Finite group schemes over a field

Theorem 4.20. If k is a field then the category of commutative group schemes of finite type is

an Abelian category.

Definition 4.21. Let G be a finite group scheme over a field k. We say that G is

e ctale, if the structural morphism G — Spec(k) is etale;

e local, if G is connected.
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Next suppose that G is commutative, we say that G is

e ctale-etale, if G and GP are both etale;
e etale-local, if G is etale and GP is local;

e local-etale, if G is local and GP is etale;

e local-local, if G and GP are both local.

(Note that G is obviously finite locally free over k).

Example 4. If char (k) = 0 then by Catier theorem every finite commutative k-group scheme is

etale-etale.
If char (k) = p > 0, then
e 7/mZ is etale-etale for p { m;
o Z/p"Z is etale-local;
® Ji,n is local-etale;
® ayn is local-local.

Lemma 4.22. Let (G; and G4 be finite group schemes over a field k, with Gy etale and G2 local.

Then the only morphisms from G to G2 and from G to Gy are trivial ones.

Proof. The properties being local and etaleness are stable under base change. Hence we may
assume that k& = k. Then Gared C© G2 is a connected etale subgroup scheme, hence Ggeq =
Spec(k). Now note that any homomorphism G; — Ga factors through Ggyeq. Similarly, any
homomorphism Gy — G factors through GY = Spec(k). |

Proposition 4.23 (connected-etale sequence). Let G be a finite group scheme over a field k.
Then G is an extension of an etale k-group scheme G 2 wo(G) by the local group scheme G°.

Hence we have an exact sequence
1G5 G — Gy — 1

If k is perfect then this sequence splits.

Proof. The exactness of this sequence follows from 3.17.

Now we assume that k is perfect. Then G..q C G is a closed subgroup scheme. From 3.6 we

know that it is smooth. Obviously, it is quasi-finite, then is etale.

We claim that Greq — G — Gl is an isomorphism. We assume that k = k. Then G is a union

of copies of G°. Then the isomorphism is clear. |
Lemma 4.24. Let S be a connected base scheme. If
0—>G1—>G2—>G3—)0

is an exact sequence of finite locally free S-group schemes then rank(G2) = rank(Gq) - rank(G3).
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Proposition 4.25. Let char (k) = p > 0. Let G be a finite connected k-group scheme. Then the

rank of GG is a power of p.

Proof. |

Corollary 4.26. A finite commutative k-group scheme is etale-etale if and only if p t rank(G).

5 Isogenies

5.1 Definition of an isogeny, and basic properties

We first use two lemmas from algebraic geometry.

Lemma 5.1. (1) Let X and Y be irreducible Noetherian schemes which are both regular and
with dim(X) = dim(Y"). Let f: X — Y be a quasi-finite morphism. Then f is flat.

(2) Let f: X — Y be a morphism of finite type between Noetherian schemes, with ¥ reduced
and irreducible. Then there is a non-empty open subset U C Y such that either f~'(U) = @ or
f:f~YU) = U is flat.

Proposition 5.2. Let f : X — Y be a homomorphism of Abelian varieties. Then the following

conditions are equivalent:

1. f is surjective and dim(X) = dim(Y);
2. Ker(f) is a finite group scheme and dim(X) = dim(Y);
3. f is a finite, flat and surjective morphism.

Remark 5.3. Note that Y is the FPPF quotient of Ker(f) — X. Thus, if f is a surjective

homomorphism between Abelian varieties, then it is flat.

Definition 5.4. A homomorphism of Abelian varieties is called an isogeny if f satisfies the
equivalent conditions in the above proposition. Since it is surjective of varieties, we may define

the degree of an isogeny is the degree of the induced function fields extension.
Proposition 5.5. If f : X — Y is an isogeny then f induces an isomorphism X/Ker(f) = Y.

Theorem 5.6. For a morphism of schemes f : X — Y, the following conditions are equivalent:

e f is universally injective, that is, every base change of f is injective.

e f is injective and for every x € X the residue field k(z) is a purely inseparable extension of

k(f(x)).

e for every field K, the map X (K) — Y (K) induced by f is injective.

A morphism satisfies these conditions is called a purely inseparable morphism.
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Proof. This proof follows from https://stacks.math.columbia.edu/tag/0154.

1. = 3.: Note that X (K) can be identified as the set of pairs (z,¢) where z € X and ¢ is
an inclusion k(z) < K. The natural map X (K) — Y (K) sends (x,¢) to (f(z), f* o ¢). This is

obviously injective.

3. = 1.: For any base change S’ — S, suppose that x1,72 € X xg S’ map to the same point
s’ € §'. Choose a field K with two inclusions k(z1) — K and k(x2) < K which induce the
same inclusion k(s") < K, then these define two morphisms Spec(K) — X g and induce the same
morphism Spec(K) — S’. Note that the composite Spec(K) — S” — S can also induced by the
composite Spec(K) — Xg — X — S. Thus the composites of the two morphisms Spec(K) — Xg
with Xg» — X are equal. Therefore, 1 = x2.

1.+ 3. = 2.: If there is a point € X such that k(z) is not a purely inseparable extension of
k(f(x)), we may find a field extension K/k(f(x)) such that k(x) has two k(f(z))-homomorphisms
into K. Then the map X (K) — Y (K) is not injective, a contradiction.

2. = 3.: This is obvious from that f is injective. |

Theorem 5.7. Let f: X — Y be an isogeny.

(1) The following conditions are equivalent:

e The function field k(X) is a separable field extension of k(Y").
e f is an etale morphism.

e Ker(f) is an etale group scheme.
(2) The following conditions are equivalent:

e The function field k(X) is a purely inseparable field extension of k(Y).
e f is a purely inseparable morphism.

e Ker(f) is a connected group scheme.

Proof. (1) Y is the etale quotient of Ker(f) — X. Thus (b) and (c) are equivalent.

Recall that being etale induces that finite separable extensions between corresponding residue

fields. Applying this with the generic point X we see that (b) implies (a).

Now we assume that (a) holds true. Recall that a morphism between irreducible schemes sends
the generic point to the generic point if and only if the morphism is dominant (f(7) C f(n)), f
then actually sends the generic point of X to the generic point of Y. Thus the assumption in (a)

means that f is unramified at the generic point of X.

To show that f is etale, it suffices to show that f is unramified everywhere, that is, (Qx /y) =0
for x € X. Since {dx/y is a coherent sheaf, the support of it is a closed subset. Then there is
an open subset of X, which contains the generic point of X, Qx/y is 0 on it. Thus, there is a

non-empty open subset of X such that the restriction of f is etale. Therefore f is etale everywhere.

(2) The case that (b) implies (a) is obvious.
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If (a) holds true, note that f can be factored as X — X/(Ker(f))? — Y, where Ker(f)? C
Ker(f) is the connected component of ex. The kernel of the second isogeny is Ker(f)/Ker(f)°,
this is etale. By (1) we can find that Ker(f) is connected.

Finally suppose that N = Ker(f) is a connected group scheme, choose an affine subscheme
Spec(A). To show that f is purely inseparable, we show that for every K, X(K) — Y(K) is
injective. If y : Spec(K) — Y is a K-valued point, then f~!(y) D Spec(Ag). Obviously Ay is
Artinian local. Then f~!(y) consists of a single point. Then f is purely inseparable. |

Proposition 5.8. Every isogeny can be factorized as a composite of an inseparable isogeny and

a separable isogeny.

Corollary 5.9. For n # 0, the morphism [n]x is an isogeny. If g = dim(X), we have deg([n]x) =
n?9. If (char (k),n) = 1, then [n]x is separable.

Proof. Choose an ample and symmetric line bundle L on X, then we have [n]% L = L®"*. The
restriction of [n]% L to Ker([n]x) is a trivial bundle which is ample. Since X is projective, this

implies that Ker([n]x) is finite. Hence [n]x is an isogeny. [ |

Corollary 5.10. If X is an Abelian variety over an algebraically closed field k& then X (k) is a
divisible group. That is, for every P € X (k) and n € Z\{0} there exists a point Q € X (k) with
n-Q =P.

Corollary 5.11. If (char (k),n) = 1, then X (n)(ks) = X (n)(k) = (Z/nZ)9.

Proposition 5.12. If f: X — Y is an isogeny of degree d then there exists an isogeny g : ¥ — X
with go f = [d]x and fog=[d]y.

5.2 Frobenius and Verschiebung

Proposition 5.13. Let X be a g-dimensional Abelian variety over a field k with char (k) = p > 0.

Then the relative Frobenius homomorphism Fly ;. is a purely inseparable isogeny of degree pY.

Proof. Recall that there is a composition

I
Froby : X —/% x) _, x

Since Froby is the identity on the topological space | X|, the underlying space of X [F] £ Ker(Fy /i)
only has one point {e}.

Now we consider an open affine neighborhood U = Spec(A) of {e}, where A has the form
klxi, - ,x|/(f1, -+, fn), as X is of finite type over k and every ideal of k[z1,--- ,x,] is finitely
generated. Note that e corresponds to the maximal ideal m = (z1,--- ,x,) € A. The restriction

of F/ to U, denoted by Fy;, is then given by

A= k?(f[‘l,"' ’xr)/(fla"' afn) <_A(p) = k?[!l?l,"' axr]/(fl(p)a"' af'r(zp))

sending z; to 2%, where fi(p ) is obtained from fi by raising the coefficients to their p-powers. Then
X[F] is exactly Spec(B), where B = k[z1, - ,z,|/(z}, -+, 2%, f1,- -+, fn). Since B is finite over
k, X[F] is precisely a finite group scheme. Hence, F/;, is an isogeny.
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Consider the m-adic completion of A, suppose that z1,---,z, form a basis of m/m? = TY .,

then by the structure theory of complete regular local rings there is an isomorphism

A=kt tg]]
Then
B = k[tla 7t9}/(t£1]7 atZ)

In particular, this shows that deg(Fx/,) = p? and that X[F] is a connected group scheme. [ |

Remark 5.14. Let R be a ring with char (p) = p > 0. Let A be an R-algebra. Write TP(A) =
ARRA®RA®R---®r A for the p-fold tensor product of A over R. The symmetric group &, on
p letters naturally acts on TP(A). Write SP(A) C TP(A) for the subalgebra of &y,-invariants.

Let N : TP(A) — SP(A) be the map given by

N(a1®~--®ap) = Z ag(1)®~--®ao(p)
oc6,

If s € SP(A) is a symmetric tensor and t € TP(A) then N(st) = sN(t). It follows that J =
N(TP(A)) is an ideal of SP(A).

Write U = Spec(A) — T = Spec(R). The group &, acts naturally on UY. = U xp U x7 U %

- x7 U (p factors), and the quotient is given by SP(U) = Spec(SP(A)). The scheme SP(U) is

called the pth-symmetric power of U over T. Let UP/T) — SP(U) be the closed subscheme defined
by J.

Consider the map

U 2 UR — SP(U)

which corresponds to

a1@-Qap—rai--ap A

SP(A) — TP(A)
Note that the second map sends N(a1 ® --- ® ap) to pl-ay---ap, which is 0 since char (A) = p.
The map SP(A) — A factors by SP(A)/J, and then the morphism U — SP(U) factors by UP/T].
We write
Flyp: U — UPT]

for the morphism.

Write AP/B) for the base change of A under Frobg. The relative Frobenius morphism is then
given by U — U®P/T) = Spec(AP/R)). Note that there is a canonical map

I E AW/R) _y GP(AY /T

sending a®@r tora®@a® -~ ®a (mod J). Write oy 7 : Ul/Tl - U®/T) for the morphism of
schemes induced by ¢ o r. Then we have Fyr = oy © F[’]/T.

Definition 5.15. Consider a base scheme S of characteristic p and an S-morphism X — S. Define
SP(X), the pth symmetric power of X over S, to be the quotient X g under the natural action of
S,. We can glue those U P/T] for affine U C X and T C S to obtain a locally closed subscheme
XIP/S1 <y SP(X). Also, there is a factorization of Fx/s

Fyjs = (X X5 xl/s) 205, x0/s))
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By construction, the composition of F7 /5 and the inclusion X [p/S] s SP(X) is the same as the
diagonal A : X — X¢ and the natural projection X§ — SP(X).

X —2& 5 x?P

Py / Sl icategorical quotient
x/ST o SP(X)
Yx/s

x®/9)

Lemma 5.16. (1) The construction of X[P/5! as well as the formation of FE(/S and ¢x/g, is
functorial in X and compatible with flat base change T' — S.

(2) If X is flat over S then ¢x/g is an isomorphism.

Proposition 5.17. For a commutative S-group scheme G, there is a morphism m® : Gg -G
given by (g1, ,9p) — g1 gp. By the universally property of categorical quotient, the morphism
m(P) is G-invariant and then factors through SP(G), say via m®) : S(G) — G. Then [p]: G — G

¢ )

F
factors as [p] = (G _GI5, X/ oy SP(G) — G).

G —2— b

Fé/sl lcategorical quotient
GIP/S) — 5P(G)

%OG/SJ lm@)
aw/S) G

Definition 5.18. If G is a commutative flat group scheme over a basis S of characteristic p then

we define the Verschiebung homomorphism
Vg/s : G(p/S) -G

to be the composition

-1
Ya/s m(P)

Gw/9) 22, /Sl < sP(G) 2 @

Proposition 5.19. Let S be a scheme with char (S) =p > 0. Let G be a flat S-group scheme.

(1) We have Vg0 Fg/s = [ple : G — G.

(2) If G is finite locally free over S then the Verschiebung is Cartier dual to the Frobenius
homomorphism. More precisely, we have (V¢ )P =Fgp /s and Vgys = (Fgp/ )P,
Corollary 5.20. Let X be an Abelian variety over a field k& with char (k) = p. Then the
Verschiebung homomorphism Vi, : X () 5 X is an isogeny of degree p9. We have Vy ko Fx =
[plx and Fx/i, 0 Vx/i = [plxw) -
Remark 5.21. We can also define the m-iterate of Verschiebung homomorphism like the Frobenius
case. Write F)’}‘/k : XP™) 5 X for the "mth-power“ of Frobenius, then

Ve o FXy = P"]x
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Proposition 5.22. Suppose that char (k) = p > 0, there is an integer f = f(X), with 0 < f <
g = dim(X), called the p-rank of X, such that X[p™](k) = (Z/p™Z) for all m. If Y is isogenous
to X then f(Y) = f(X).

Proof. We can factor p™ : X — X as

Fe

Pp"x = (@ =2 X0 2 X7 22 X)

where hyoFy), is purely inseparable and hs is a separable isogeny. Recall that deg([p"]x) = (p™)%

d(m)

and deg(F}?/k) = p™9, we have deg(hs) =p for some 0 < d(m) < gm.

Let f =d(1). Then X[p](l;:) o (Z/pZ)f. By the exact sequence

m—1

0 — X[p" (k) = X[p™](k) = X[p](k) — 0

we can obtain X [p™](k) = (Z/p™Z)7. [ |

5.3 Density of torsion points

Definition 5.23. Let iy, : X[p™] < X be the inclusion homomorphism. We say that (J,, X[p™]
is scheme-theoretically dense in X, if there does not exist a proper closed subscheme Y C X such
that all ¢, factors through Y.

Remark 5.24. If char (k) # p, we can express the scheme-theoretically dense as topological dense,

i.e., the union of X [p™] is topological dense in X.

However, if char (k) = p, this is generally not true.

Theorem 5.25. Let X be an Abelian variety over a field k and let p be a prime number. Then

the collection of subschemes X [p™] is scheme-theoretically dense in X.

Proof. We proof for char (k) # p and char (k) = p separately.

First we assume that char (k) # p. It suffices to show for the case k = k, since we only need to
prove for the underlying topological space. Let T' = J,, X[p™], and let Y be the smallest closed
subscheme such that all i, factors through Y. Note that Y is indeed the Zariski closure of T'. We

first prove that Y is a subgroup scheme.

Let x € T, then the translation ¢, : X — X maps T to itself. Because Y and Y x Y are
reduced, m(Y xY) C Y. Further, it is clear that the inverse maps T" to T. Thus, Y is a subgroup

scheme.

Consider the identity component Y, it is a Abelian subvariety of X. Let N = #wg(Y),
g = dim(X) and h = dim(Y?). First we have #Y°[p™](k) < p*™* then #Y[p™](k) < p*™"N.
But we know that #Y [p™](k) = p?™9. Taking m very large we find that h = g. Hence Y? = X.

Now let char (k) = p. Let F" be the mth power of the Frobenius homomorphism and let
X[F™] be its kernel. We know that X[F"™] C X[p™]. So it suffices to show that |J,, X[F™] is

scheme-theoretically dense in X. We can prove it using commutative algebra.
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Let Y be a closed subscheme such that all inclusions X [F"™] — X factors through Y. Choose
an open affine neighborhood U = SpecA with A = k[zq,--- ,xr}/(fl(pm), e ,fr(bpm)). Then we

know that X[F™] is defined by the ideal (:Ulfm, ooy a?” fio- fa) € A Let J be the ideal of
Y NU. Then JA is contained in (w{'m, . ,l‘gm). Note that the intersection of all these ideals is 0
in A. |

Proposition 5.26. Let X be an Abelian variety over a field k. If Y — X is a closed subgroup
scheme then the connected component Y? C Y that contains the origin is an open and closed
subgroup scheme of Y that is geometrically irreducible. The reduced underlying scheme Yrg g X

is an Abelian subvariety of X.

Proof. |

6 The Picard scheme of an Abelian variety

6.1 Relative Picard functors
Definition 6.1. Let Py/g : (Sch/s)o — Ab be the contravariant functor
Pxs: T — Pic(Xr) = H(X x5 T,Gp,)

However, this is not representable.

The relative Picard functor Picy /g : (Schy, 5)? — Ab is defined to be the fppf sheaf associated
to the presheaf Px,g. An S-scheme representing Picy,g (if such a scheme exists) is called the

relative Picard scheme X over S.
Remark 6.2. We shall consider the following situation:

the stucture morphism f: X — S is qcgs.
() f«(Oxxg1) = Or for all S-schemes T.

f has a section s : S — X
This holds, for instance, if S = Spec(k) and X is a complete k-variety with X (k) # <.

Definition 6.3. If L is a line bundle on X7 for some S-scheme 7', then writing ep : T'— Xp for

the section induced by €, by a rigidification of L along e we mean an isomorphism a : Op = erL.

Let (L1, aq) and (L, a2) be line bundles on X7 with rigidification along e. By a homomorphism
between them we mean a homomorphism of line bundles h : Ly — Lo with the property that
(e*h) o a1 = ag.

Note that to give an endomorphsim of (L, «), it suffices to give an element h € Hom@XT (L, L)
with €*(h) = 1. Note that Homo, (L, L) is the global section of Homo,, (L, L) = L7'®L = 0x,,
we have Homo, (L, L) = I'(X7,Ox,) = I(T, fi(Ox;)). By the assumption (*), this is equal to
(T, Or).
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6.1 Relative Picard functors

Definition 6.4. Note that the pairs (L, «) form an Abelian group via the tensor product. We
may define a functor Py/g : (Sch/s)0 — Ab by

Px/g.: T+ the isomorphsm classes of rigidified line bundle (L, a) on X xg T

If h: T" — T is a morphism of S-schemes, then Px/g(h) sends (L, ) to (L',a’), where L' =
(idx x h)*L and ¢ is the pullback of « under h.

Suppose that Px/s. is representable by an S-scheme. On X xg Px/g. we have a universal
rigidified line bundle (P, v), called the Poincare bundle, satisfying the following property: if (L, «)
is a line bundle on X x g T with along the section e then there exists a unique morphism g : T' —
Px /s, such that

(L,a) = (idx x g)"(P,v)

Proposition 6.5. Under the assumption (*),
(1) for every S-scheme T there is a short exact sequence
0 — Pice(T) 2% Pic(Xr) — Picy,s(T)

this property does not need that f admit a section. If further f admit a section, then the right

hand is surjective, that is, the following sequence is exact
0 — Pic(T) % Pic(Xr) — Picys(T) — 0

(2) For any S-scheme T', we have an isomorphism
Pic(X1)/priPic(T) = Px/s.(T)

obtained by sending the class of a line bundle L on Xt to the bundle L ® f*e}[fl with its

canonical rigidification.

(3) The functor Px/g is an fppf sheaf.
Corollary 6.6. Px,5. = Picy,g are the functors sending 7' to

{line budles on X}
{line bundles of the form f*L, with L a line bundle on 7'}

Corollary 6.7. Picy,g equals to the Zariski sheaf associated to Px/g.

Theorem 6.8. We list some results about representability for the general case (that is, we no

longer assume that f satisfies (*)):

(1) If f is flat and projective with geometrically integral fibres then Picy g is representable by

a scheme, locally of finite presentation and separated over S.

(2) If f is flat and projective with geometrically reduced fibres, such that all irreducible com-
ponents of the fibres of f are geometrically irreducible then Picy/,g is representable by a scheme,

locally of finite representation over S.

(3) If S = Spec(k) and f is proper then Picx/g is representable by a scheme that is separated
and locally of finite type over k.
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6.2 Digression on graded bialgebras

Remark 6.9. Let X be a complete variety over k, then f satisfies (*). LetY be a k-scheme and
let L be a line bundle on X Xy Y. By the above theorem Picy i can be represented by a scheme.
Then there is a morphism Y — Picx . Then the mazimal closed subscheme Yo — Y is then the

fibre over the zero section of Picxy.

Now we turn to some basic properties of Picy .

Proposition 6.10. Let X be a proper variety over k.

(1) The tangent space of Picy g at the identity element is isomorphic to H'(X, Ox). Further,
the connected component Pic% /5 1s smooth over k if and only if dim Pic% /s = dim H YX,0x),
and this always holds if char (k) = 0.

(2) If X is smooth over k then all connected components of Picx/;, are complete.

Remark 6.11. If C is a complete curve over a field k. Then Picgyy, is a group scheme, locally of
finite type, smooth over k.

In particular, the identity component Pic%/k is a group variety over k. If in addition we assume
that C is smooth then Pic%/k is complete, and is therefore an Abelian variety. Then we call Picoc/k
the Jacobian of C.

6.2 Digression on graded bialgebras

We quickly list some results.
Definition 6.12. We say that the graded k-algebra H® is graded-commutative if
ay = (—1)des(®@) deg)y o
for all homogeneous x,y € H®. The algebra H*® is said to be connected if H? = k- 1. The algebra
H* is said to be of finite type over k if dimg(H™) < oo for all n.

If HY and H3 are graded k-algebra then the graded k-module H} ®j H3 inherits the structure
of a graded k-algebra: for homogeneous z,{ € Hy and y,n € H3 one sets (z®vy) - (£ ®@n) =
(—1)dee)dee(®) . (1€ @ yn). Then a graded k-algebra H® is graded-commutative if and only if the
product operation H®* ® H®* — H*® is a homomorphism of graded k-algebras.

Definition 6.13. A graded bialgebra over k is a graded k-algebra H® together with two homo-
morphisms of k-algebras

w: H® — H®* ®, H* called co-multiplication

€: H®* — k the identity section

such that
(pt@id)op=(id@u)ou: H* — H* @ H®* @y H®

and
(e®id)op: H* — H®
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Theorem 6.14 (Borel-Hopf structure theorem). Let H® be a connected, graded-commutative
bialgebra of finite type over a perfect field k. Then there exists graded bialgebras H and an
isomorphism of bialgebras

H.ng.®k’"'®kH;
such that the algebra underlying H_ is generated by one element.

Corollary 6.15. With the same hypothesis above, assume that there is an integer g such that
H™ = (0) for all n > g. Then dimy(H') < g. If dimg(H!) = g then H® = A®*H' as graded
bialgebras.

Corollary 6.16. Let X be a group variety over a field k. Then H*(X, Ox) has a natural structure
of a graded k-bialgebra. We have dim;,(H'(X,Ox)) < dim(X).

Definition 6.17. Let H® be a graded bialgebra with comultiplication p: H®* — H® ®; H®. Then
an element h € H*® is called a primitive element if u(h) =h®1+1® h.

Proposition 6.18. Let V be a finite dimensional k-vector space, and consider the exterior algebra
A®V. Then V = AV is the set of primitive elements in A®V .

6.3 The dual of an Abelian variety

Remark 6.19. Let X be a complete variety over k. Recall that Picx/, also represents rigidified
the line bundles, let & be the Poincare bundle on X x Picy/, with a rigidification

a: PliexixPiex,, — OPicy
along the section Spec(k) — X.
Let L be a line bundle on X. Then there is a uniquely morphism
o1+ X = Picxyy
given by x — [t5L ® LY. This morphism satisfies that
(idx X )" = A(L)
Also, this homomorphism is explicitly This homomorphism factors via Picg(/k since X is connected.

Theorem 6.20. Let X be an Abelian variety over a field k. Then Picgf /k is reduced, hence it
is an Abelian variety. For every ample line bundle L the homomorphism ¢ : X — Picg( /k is an
isogeny with kernel K(L). We have dim H'(X,Oy) = dim(PicOX/k) =dim X.

Proof. Since L is ample, K (L) is a finite group scheme. Thus dim(Pic% /i) = dim(X). Therefore
dim(Picg(/k) = dim(X) = dimg(H'(X, Ox)). Then Picg(/s is smooth over k, and hence is reduced.
]

Definition 6.21. The Abelian variety X! = Picg(/k is called the dual of X. We write &2, of Px,
for the Poincare bundle on X x X*t. If f : X — Y is a homomorphism of Abelian varieties over k
then we write f:Y? — X? for the induced homomorphism, called the dual of f, such that

(id x f1)* Px = (f x id)* Py
Remark 6.22. We use the notation x* for the Cartier dual of finite group schemes. We use the

notation *t for the dual of Abelian varieties.
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7 Duality

7.1 Formation of quotients and the descent of coherent sheaves

Definition 7.1. Let S be a base scheme. Let p: G xg X — X be an action of an S-group scheme
G on an S-scheme X. Let F' be a coherent sheaf of Ox-modules. Then an action of G on F,
compatible with the action p, is an isomorphism A : pri F' = p*F of sheaves on G x g X, such that

on G xg G xg X we have a commutative diagram

PTgs()\)

pryF pragpF
(mxidx)*()\)l J/(idc xp)*(A)

Proposition 7.2. Let p : G xg X — X be an action of an S-group scheme G. Suppose that
there exists an fppf quotient p : X — Y of X by G, recall that we have a canonical isomorphism
U:GxX = X xX. If Fisa coherent Oy sheaf then the canonical isomorphism Acap :
pri(p*F) = p*(p*F). This defines a p-compatible G-action on p*F. The functor F — (p*F, Acan)
gives an equivalence between the category of coherent Oy-modules and the category of coherent
Ox-modules with p-compatible G-actions. This restricts to an equivalence between the category

of finite locally free Oy-modules and the category of finite locally free O x-modules with G-action.

Proposition 7.3. Let G be a commutative, finite locally free S-group scheme. Let p : GxgX — X
be a free action of G on an S-scheme X. Let p : X — Y be the quotient of X by G. Suppose
that f«(Ox, )= Or for all S-scheme T". Then for any S-scheme there is a canonical isomorphism

of groups
67 : {isomorphism classes of line bundles L on Y7 with p*L = Ox.,.} = GP(T)

and this isomorphism is compatible with base change T" — T.

7.2 Two duality theorems

Theorem 7.4. Let f: X — Y be an isogeny of Abelian varieties. Then f!:Y? — X' is again an

isogeny and there is a canonical isomorphism of schemes
Ker(f)P & Ker(f*)

Proof. If T is a k-scheme, recall the definition of Y, any class in Ker(f?)(T') can be represented by
a line bundle L on Y7. Note that f*L is trivial, then f*L is of the form pr7 M for some line bundle
M on T under the projection pry : Xp — T. Thus L' = L @ (prfy)*M 1, where prly : Yr — T, is
a line bundle on Y7 which represents the same class with L in Ker(f*)(T'), and its inverse image
on Xt is just Ox,.. Hence, every class in Ker(f!)(T) is uniquely represented by a line bundle L
on Y7 such that f*L = Ox,.

Then obviously we have Ker(f)? = Ker(f!). In particular, f has finite kernel and then is an
isogeny. |
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Corollary 7.5. Let f: X — Y be a homomorphism. Let M be a line bundle on Y and write
L = f*M. Then ¢r, : X — X equals the composition

t
x Ly oyt Iy xt

If f is an isogeny and M is non-degenerate then L is non-degenerate too, and rank(K (L)) =
deg(f)? - rank(K (M)).

Remark 7.6. By choosing T = S = Spec(k), we find that the natural morphism g : T — Picg{/k

gives an isomorphism (idx x g)*2? = Ox under the morphism
X x Spec(k) = X x Picg(/k

This means P|xxiexy = Ox. Thus we can choose a rigidification of & along X x {ex}. Such
a rigidification is unique up to the invertible elements in I'(X,Ox) = k. Then there is a unique

rigidification alone X x {ex} such that it agrees the rigidification along {0} x X' at (ex,ex).

Now, let T = X, and consider the dual of Xt. Then there is a morphism kx : X =T — X%
defined by the rigidification above.

Lemma 7.7. Let L be a line bundle on X. Then ¢p = ¢! ory : X — X'

Proof. Just compute it. [ ]

Theorem 7.8. Let X be an Abelian variety over a field. Then the homomorphism xx is an

isomorphism.

Proof. From the above lemma, kx is an isogeny. Further, by computing the rank of two sides, we
find that deg(kx) = 1. [ |

Corollary 7.9. Let L be a non-degenerate line bundle on X. Then K (L) = K(L)".

Proof. K(L) is exactly the kernel of . Then K(L)? = Ker(¢}) = K(L). [ ]

7.3 Further properties of Picg(/k

Remark 7.10. We shall associate to L a homomorphism ¢r, : X7 — X% for some k-scheme T.

First we extend the Mumford bundle A(L) on X7 x17Xp. Note that Xox7 X = (X X3 X) % T,
we may define
A(L) = (m x idr)*L @ p13L ™ @ pha L™

that is, we view T as the base scheme.

Now similarly, there is a morphism

@L - Xr— PiCXT/T

which factors through Xkt = Picg(/k X T.

(©) F.P. (1800010614@pku.edu.cn) 32 2023.5



) IanpLERTHEIR

. -0
7.3 Further properties of Picy, .

Lemma 7.11. (1) The morphism ¢y, only depends on the class of L in Picy (7).

(2) Let f : T — S be a morphism of k-schemes. If M is a line bundle on Xg and L =
(idx x f)*M on Xp, then ¢, : Xp — Xfp is the morphism obtained from ¢,; : Xg — Xé.

(3) ¢r is a homomorphism.

Proposition 7.12. Let K(L) C X7 be the kernel of ¢r. It is just the maximal subscheme of X

over which A(L) is trivial.
Lemma 7.13. Let T be a locally Noetherian k-scheme. Write 7 : X1 x7 X7 — T for the structure
morphism. For a line bundle L on X7, consider the following conditions:

1. QoL = 0.

2. A(L) = pr3 M for some line bundle M on Xr.

3. A(L) = 7*N for some line bundle N on 7.

4. ¢r, =0 for some t € T
Then 1. <= 2. <= 3. = 4., and if T is connected then all four conditions are equivalent. If

these equivalent conditions are satisfied then N 2 ¢*L~! and M = pri.N, where e : T — Xr is
the identify section.

Remark 7.14. Let X and Y be two projective varieties over a field k. Then the contravariant
functor
Homgen(X,Y) : (Schy,) — Set T +— Homgep (X1, Y1)

1s representable by a k-scheme, locally of finite type.

Theorem 7.15. Let X and Y be two Abelian varieties over a field k. Then the functor
HOIHAv(X, Y) : (SCh/k) —Ab T+— HomGSch/T (XT, YT)
is representable by an etale commutative k-group scheme.

Lemma 7.16. Let T be a connected k-scheme. Let L be a line bundle on Xp. For any two
k-valued points s,t € T'(k) we have ¢, = ¢r,. In particular, Picg(/k C Ker(yp), where ¢ is the
map sending L to .

Proof. By 7.13,let T = X! and L = &, we find that X! C Ker(p). As ¢ is a homomorphism, it

is constant on the connected components.

Let f : T — Picx g be the morphism corresponding to L. This morphism factors through
some connected components C. Let M = Z|xxc. Then ¢y, is the pull-back of ¢ys. By the above
discussion we fine that PMy = PMy - |

Corollary 7.17. Let X,Y be Abelian varieties over k. Then the map
Hom(X,Y) — Hom(Y"*, X*)

given by f + f! is a homomorphism of k-group schemes. For any n € Z, we have (nx)! = nx:.
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Definition 7.18. Let X be an Abelian variety. We call a homomorphism f : X — X* symmetric
if f = f! taking the isomorphism rx. Note that Hom™™ (X, X?) is exactly the kernel of the
endomorphism Hom(X, X?) given by f ~ f — f°.

Proposition 7.19. The map ¢ : Picy/, — Hom(X, X?) sending L to ¢y, is a homomorphism of
groups, and it factors through Hom®™ (X, X1).

Proof. This follows from that ¢, = ¢} o kx. |

Lemma 7.20. Let L be a line bundle on X with 7 = 0. If L is not trivial, then H*(X,L) = 0

for all <.

Proof. Since ¢y, =0, A(L) is trivial on X x X. Thus (o + 5)*L = o*L ® *L for any morphisms
a,B: X — X. By taking « = —f8 = idx we may find that (—1)*L = L.

First for the group H%(X,L) = I'(X, L), if there is a nontrivial section s, then (—1)*s is a
nonzero section of (—1)*L = L~!. Then both L and L~! have a nontrivial section. Therefore, L

is trivial on X, a contradiction.

Let 4 be the smallest positive integer such that H(X, L) # 0. Consider the composition
X5 XxXBX 20 (2,02

This induces maps
HY(X,L) - H(X x X,m*L) - H'(X, L)
with the composition is the identify. By Kunneth formula
HY(X x X,m*L) 2 H(X x X,piLepsL) = Y HYX,L)® H'(X,L)=0
a+b=i

The result follows immediately. |

Proposition 7.21. Let X be an Abelian variety over an algebraically closed field k. Let L be an
ample line bundle on X and M a line bundle with ¢ps = 0. Then there is a point z € X (k) such
that M 2 L ® L™

Proof. |

Corollary 7.22. Let X be an Abelian variety over a field k. Then Picg(/k = Ker(y).

Proof. We already know that Pic® C Ker(y). Hence Ker(y) is the union of some connected
components of Pic. But every k-valued point of Ker(¢) lies in Pic’. Then the result follows. M

Corollary 7.23. Let X be an Abelian variety over a field k. Let L be a line bundle on X.

(1) If [L"] € Picg(/k, for some n # 0 then [L] € Picg(/k. In particular, if L™ = Ox, then
[L] € Picg(/k.

(2) We have [L ® (—1)*L7!] € Picg(/k.
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(3) We have
[L] € Pick

< n'L=L", Vnel

< n*L = L" for some n € Z\{0,1}

Proof. (1) Since ¢ : Picy;, — Hom(X, X*1) is a homomorphism of groups, prn = nyt - @ =
pronx. If prn is trivial, since nx is surjective, ¢y, is trivial.

1ti L —1)* = — . - *L— .
(2) By the definition of ¢, we find that ¢_1-f, @p forall L. Thus Le (—1)*L~! € Ker(yp)

(3) I [L] € Picg(/k, then on X x X we have m*L = p* L®q* L, where p and ¢ are the projections.

Then by induction on n we have n*L = L".
In general case, n*L = L" ® [L ® (—1)*L]™*~™/2_ then n*L = L" for n # 0,1 implies that
L® (-1)"L e Picg(/k. By (2) we have L? € Picg(/k and by (1) then L € Picg(/k. [ |

Definition 7.24. Define the Neron-severi group scheme NSy ;. to be the fppf quotient of Picx/y,
modulo Picg(/k. We also write NS(X) = NSyx/.(k), it is the Gal(ks/k)-invariant subset of

NSk (k).

We say that two line bundles L and M are algebraically equivalent, denoted by L ~yu, M, if
[L] and [M] have the same image in NS(X).

Corollary 7.25. The Neron-Severi group NS(X) is torsion-free. If n € Z, and L is a line bundle
on X then n*L is algebraically equivalent to L™, in other words, n* : NS(X) — NS(X) is
multiplication by n?.

Proof. For L € NS(X), if L™ = 0, that is, L™ € Pic()](/k, then by 7.23 L = 0.

Also by 7.23 (2) and that n*L = L("**")/2@ (—1)*L, n*L is algebraically equivalent to L"*. W

Corollary 7.26. Recall that there is a natural homomorphism ¢ : Picx/, — Hom™™(X, X*) C
Hom (X, X1), since ¢y, = 0 if and only if L € Pic())(/k, it factors as

Picy/; — NSy, < Hom™™(X, X"

7.4 Applications to cohomology

Proposition 7.27. Let X be an Abelian variety with dim(X) = g. Cup-product gives an iso-
morphism A®* H'(X,Ox) = H*(X,Ox). For every p and q we have a natural isomorphism

19X, 0F

p
X/k) /\ Txe0) ® (\ T o)

The hodge numbers h?? = dim?(X, Q% ) are given by h?? = CLCY.

X/k

Proof. By 6.20 and 6.15, cup products induce isomorphisms. Recall that €'} I = = (N"Ty /k)
®rOx, then

p
X/k /\Txt 0 (/\ T¥,)
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Corollary 7.28. The morphism nx on X induces multiplication by n?*? on H?(X, Q).
Remark 7.29. There is a Hodge-de Rham spectral sequence
EPT = H(X,0%) = HI(X/k)

on any smooth proper algebraic variety X. Deligne and Illusie show that the spectral sequence
degenerates at the E1-level for k with characteristic 0. But for Abelian varieties, this is also true

without for any restriction for k.

Proposition 7.30. There is an exact sequence

0= H(X, Q%)) = Tx o — Hip(X/k) = H'(X,0x) =0

7.5 The duality between Frobenius and Verschiebung

Proposition 7.31. Let X be an Abelian variety over a field k of characteristic p. We identify
(XH®) = (X®)t and we denote this Abelian variety by X*®) . Then we have

Proof. |

8 The Theta group of a line bundle (skip)

8.1 The theta group ¥(L)

Definition 8.1. Let X be an Abelian variety over a field k. Let L be a line bundle on X.

For a k-scheme T' define 4(L)(T") to be the set of pairs (z,¢) where z € X(T') and where
@ : Lt — t: L7 is an isomorphism.

By this, we obtain a group functor ¢ : (Sch/, — Gr).

Lemma 8.2. The group functor ¢(L) is representable. There is an exact sequence of group
schemes

0—=Gpnir—9L)— K(L)—0
where the last map is given by (z,¢) — x.

Definition 8.3. Consider the morphism
[ 1:9(0)? = 9(L)

given by
(91,92) = 919297 '95
Since K (L) = ¥(L)/G,, is commutative, the image of this morphism is in Gy,. Obviously, this

morphism induces a pairing
el K(L)? =2 (9/Gp)? = Gy

called the commutative pairing induced by the theta group.
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Proposition 8.4. Obviously the pairing has the following properties:

1. ef(z,2) = 1.
2. el is bilinear.

3. el 'L =elo(f, f).

5. If L € Pick y, then e = 1.

(=)

. For x € K(L) and y € K (L"), we have " (z,y) = e’ (x, ny).
Theorem 8.5. Let X be an Abelian variety over a field k. Write C for the Abelian category of

commutative group schemes of finite type over k. Associating 4 (L) with L gives an isomorphism

Xt(k) = Ext (X, G,)

8.2 Descent of line bundles over homomorphisms

Theorem 8.6. Let f : X — Y be a surjective homomorphism of Abelian varieties. Let L be a line
bundle on X. Then there is a bijective correspondence between the M € Pic(Y') with f*M = L
and the homomorphism Ker(f) — ¢ (L) lying over the natural inclusion Ker(f) — X.

9 The cohomology of line bundles (skip)

Theorem 9.1. Let X be a g-dimensional Abelian variety over a field k. Let & be the Poincare

bundle on X x X*. Then
0 n#yg

R"(p2)« P =
(P2) {z’o(k) n=g

and
0 n#yg

H"(X x X', 2) =
k n=g

Here ig(k) denotes the skycraper sheaf at 0 € X! with stalk .

Theorem 9.2 (Riemann-Roch theorem). If L is a line bundle on a g-dimensional Abelian variety,
then

X(L) =c1(L)?/g!, deg(yr) = x(L)*

Corollary 9.3. Let f : Y — X be an isogeny. If L is a line bundle on X then x(f*L) =
deg(f) - x(L)-

Theorem 9.4 (Vanishing theorem). If L is a non-degenerate line bundle, that is, K (L) is finite,
then there is a unique integer i such that H*(X, L) # 0.

Definition 9.5. Let L be a non-degenerate line bundle then the unique ¢ = (L) such that
hi(L) # 0 is called the index of L. Recall that i(L) = 0, that is, L is effective, then L is ample.
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Example 5. For the case X is a curve, g = 1. Let D be a divisor on X of degree d. Thus by
Riemann-Roch theorem (L) = h°(O(L)) — h'(O(L)) = d. Then

D is degenerate <= ¢ is not an isogeny <= deg(pr) =0 <= x(L)=0 < d=0

D is non-degenerate with i(L) =0 <= h°>0, h' =0 <= d >0
D is non-degenerate with i(L) =1 <= d <0

Proposition 9.6. (1) Let L be a non-degenerate line bundle on a g-dimensional Abelian variety
X. Then i(L™%) = g —i(L).

(2) If T is a locally Noetherian k-scheme and M is a line bundle on X x T such that all M,
are non-degenerate then the function t — i(M;) is locally constant on 7. In particular, if L is as
in (1) and L' is a line bundle on X with [L'] € Picg(/k then i(L) =i(L ® L").

(3) Let f : X — Y be an isogeny of degree prime to char (k). If M is a non-degenerate line
bundle on Y then f*M is also non-degenerate and i*(f*M) = i(M).

(4) If L is non-degenrate and m # 0 then L™ is also non-degenerate. Furthermore, if m > 0
and char (k) t m then i(L™) = i(L).

(5) If Ly, Ly and Ly ® Ly are all non-degenerate then i(L; ® Lo) < i(Ly) +i(Lo).

(6) If H is ample, L and L ® H are both non-degenerate then i(L @ H) <i(L).

Proof. (1) Recall that the canonical sheaf Q9 = Ox, by Serre duality, i(L~1) = g — i(L).

(2) By the semi-continuous theorem, for all j the function t — dimi( f (X ® k(t), M) is upper
semi-continuous. Then the first assertion follows immediately. The second assertion follows by

applying this to the Poincare bundle.

3)
(4) u

Theorem 9.7 (Kempf-Mumford-Ramanujam). Let L be a non-degenerate line bundle on an
Abelian variety X. Let H be an ample line bundle on X and write ®(¢) for the Hilbert polynomial
of L with respect to H. Then all complex roots of ® are real, and the index i(L) equals the number

of positive roots, counted with multiplicities.

Remark 9.8. Form this theorem we can also find that if f : X — Y is an isogeny and L is a
non-degenerate line bundle on'Y, then i(L) = i(f*L).

Theorem 9.9. Let L be a line bundle on an Abelian variety X over a field k. Let H be an ample
line bundle on X and write ®(¢) for the Hilbert polynomial of L with respect to H. Then the
multiplicity of 0 as a root of ® equals the dimension of K (L).

(©) F.P. (1800010614@pku.edu.cn) 38 2023.5



KA KGR G E T T

School of Mathematical Sciences Capital Normal University

10 Tate modules, p-divisible groups, and the fundamental group

10.1 Tate-/-modules

Definition 10.1. Let X be an Abelian variety over a field k, and let ¢ be a prime number differ
from char (k). Then we define the Tate {-module of X, denoted by Ty X, to be the projective limit
of the system {X[¢"](ks)}nez., With respect to the transition maps ¢ : X[ (ks) — X[07)(ks).

If char (k) = p > 0, we define
TpeeX & lim({0} & X[p](k) & X[p*](k) & ---)
Remark 10.2. The definition of Tate £-module may be reformulated by
Ty X = Homgroups(Qe/Ze, X (ks))

Indeed,
Hom(Qr/Ze, X (k,)) = lim Hom(Z/£"Z, X (k.)) = lim X[")(k.)

Proposition 10.3. T, X is a free Z,-module of rank 2g.

Remark 10.4. A homomorphism f: X — Y gives rise to a Zg-linear, Gal(ks/k)-equivalent map
T[f Ty X = TyY.

Further suppose that f is an isogeny with kernel N C X. Applying Hom(Qy/Zy, —) to the exact
sequence

0— N(ks) = X(ks) = Y(ks) = 0

we obtain an exact sequence

071X 2y & Ext!(Q¢/Zg, N (ks)) = Ext'(Qg/Z¢, X (ks)) — Ext'(Qe/Zy, Y (ks))

First we try to understand the term Ext'(Qy/Z¢, N(ks)). Write N = Ny x N¢, where N; a
group of {-power order and Nt a group of order prime to £. Then

Ext!(Q¢/Ze, N(ks)) = Ext'(Qe/Ze, Ne(ks))
Nezxt consider the long exact sequence

-+ — Hom(Qy, Ny(ks)) — Hom(Zq, Ny(ks)) — Ext' (Qe/Zg, No(ks)) — BExt' (Qe, No(ks)) — - --

Note that Ny(ks) is finite, suppose it is killed by ¢*. Then the multiplication by £* kills
all terms like Ext'(—, Ny(ks)). But the multiplication by (* is a bijection of Q. Therefore,
Ext’(Qg, Ny(ks)) = 0. Then the exact sequence above gives that

Hom(Zg, No(ks)) = Ext! (Qg/Zq¢, No(ks))
But the right hand is equal to Ny(ks), we conclude that

Ext! (Qr/Ze, N (ks)) = Ny(k)
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Now we turn to the map Ext!(Qp/Z¢, X (ks)) — Ext'(Qy/Zy,Y (ks)), denote it by E'(f), we
claim it is injective. Choose an isogeny g : Y — X such that go f = [n]x. Then E'(go f)
is multiplication by n on Ext'(Qg/Z¢, X (ks)). Now we write n = ™ -n/ with (n/,£) = 1. Then
it suffices to show that E*({™) is injective. By taking Y = X and f = [{™]x the sequence be-
comes 0 — T,X 5 TX 2 Bt (Qe/Ze, X[07)(ky)) = X[0™)(ks) — Ext!(Qe/Ze, X (k) 22
Ext!(Q¢/Zy, X (ks)). Then the injectivity of EY(£™) follows from the surjectivity of 6.

Proposition 10.5. To summarize the above remark, let f : X — Y be an isogeny of Abelian
varieties over a field k, with kernel N. If £ is a prime number with ¢ # char (k), then we have an

exact sequence of Zg[Gal(ks/k)]-modules
0= TX 2L Ty — No(ks) — 0

Corollary 10.6. Let V,X = T)X ®z, Q,. Then the induced map Vyf : V,X — VY is an

isomorphism.

Remark 10.7. The construction of the Tate module makes sense for arbitrary varieties. For
instance, TyG, = 0. Let Z¢(1) denote the Tate module TyG,,. As a Zg-module, it is free of rank
1. The action of Gal(ks/k) is therefore given by a character

xe : Gal(ks/k) — Z; = GL(Z(1))
called the (-adic cyclotomic character.
If T is any £-adic representation of Gal(ks/k) then we define T'(n) to be

T ®z, Ze(1)®" n >0
T ®z, Ze(-1)®" n<0

where Zo(1) = Ze(1)V.
Proposition 10.8. We have a canonical isomorphism
T,X' >~ (T, X)"(1)
Proof. We have
Xe") = Ker([£"] o) = Ker([e"))? = X [7]”

Hence,
X' (k) = X[07)P (ks) = Hom(X["](ks), k) = Hom (X [€")(ks), puen (k)

as groups with Galois action. Now by taking projective limits we obtain the result. |
10.2 The p-divisible group

Definition 10.9. Let S be a base scheme. A p-divisible group over S, also called a Barsotti-Tate

group over .S, is an inductive system

{Gn’Zn : Gn — Gn—l—l}neN

where:
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(1) each G, is a commutative finite locally free S-group scheme, killed by p”, and flat when

viewed as a sheaf of Z/p"Z-modules;
(2) each i, : Gy, = Gpy1 is a homomorphism of S-group schemes, inducing an isomorphism

G = Gpi1[p")

Definition 10.10. A homomorphism of p-divisible groups are defined to be the homomorphisms

of inductive systems of group schemes.

Lemma 10.11. Let S be a scheme. Let p be a prime number. If H is an fppf sheaf of Z/p"Z-

modules on S then the following are equivalent:
(1) H is flat as a sheaf of Z/p"Z-modules.
(2) Ker(p') = Im(p"~%) for all i € {0,1,--- ,n}.

Proof. For (1)=-(2): consider the exact sequence
Z]p"Z 7, Z/p"Z LN Z]p"Z
If H is flat, then by tensor H we obtain a new exact sequence
B2 g
and we see that (2) holds.

Proposition 10.12. The morphisms i, give identifications G, — Gpin[p™], thus we may treat
G, as the subgroup scheme of Gy, yp,.

The morphism [p™] : Gyt — Gmgn then can be factored as p™ : Grn — Gian[p"] € Grtn.
Then there is an induced morphism p™ : Gy — G-

By the above lemma, the sequence

im,n ™
0—>Gm—>Gm+np—>Gn—>O

is exact.

Definition 10.13. By the above proposition, there is a limit
G =limG,
_>

in the category of fppf sheaves of Abelian groups. Then G,, can be treated as G[p"].
If {G,} and {H,} are two p-divisible groups, G = lim_, G,, and H = lim_, H,, then the

homomorphisms from {G,} and {H,} are just the homomorphisms from G to H as fppf sheaves.

Proposition 10.14. By passing from the inductive system {G,} to the limit G we can identify
the category of p-divisible groups over S as the full subcategory of the category of fppf sheaves in

Abelian groups over S.

An fppf sheaf G comes from a p-divisible if and only if it satisfies the following conditions:
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(1) G is p-divisible, that is, [p]c is an epimorphism;
(2) G is p-torsion, that is, G = lim_, G[p"];
(3) the sub-sheaves G[p™] are representable by finite locally free S-group scheme.

Definition 10.15. If G = lim_, G, is a p-divisible group over a connected base scheme S, then
by definition, G is locally free and killed by p. Then the rank of G} equals to p” for some h. The
integer h is called the height of G. Then G,, has rank p™".

Over an arbitrary basis .S, we define the height of a p-divisible group G as the locally constant
function |S| — Z>o given by s — h(G(s)).

Definition 10.16. Let X be an Abelian variety over a field k. Let p be a prime number. Then
we define the p-divisible group of X, notation X [p*], to be the inductive system

{(X[P"}nz0

with respect to the natural inclusion homomorphisms X [p"] < X [p"*!]. The group X [p>] has
height 2g.

Proposition 10.17. A homomorphism f : X — Y of Abelian varieties over k£ induces a homo-

morphism f[p>] : X [p™] — Y [p™] of p-divisible groups.

If f is an isogeny, then f[p™] is an epimorphism of fppf sheaves. If N is the kernel we find an

exact sequence of fppf sheaves
0 N, = X[p=] 227 vip=] - 0
where N = N, x NP with N,, of p-power order and N? a group scheme with order prime to p.

Definition 10.18. By taking the Catier dual there is a new exact sequence

0GP -aP, —aP o0

m+n

In particular, taking m = 1 this gives homomorphisms ¢, : G? — GP 1. Then the system

{GP "} is again a p-divisible group; it is called the Serre dual of G. It has the same height as
G.

A homomorphism f : G — H induces a dual homomorphism f? : HP — GP.
Proposition 10.19. If X/k is an Abelian variety then we have a canonical isomorphism
X'[p>) = X [p>)?

Remark 10.20. The definition of p-divisible group also makes sense for certain other commutative

group varieties. For instance, for any k-algebra R,
Gm[p™](R) = {z € R*|z"" =1 for some n}
The height of G, [p™] is 1.
The dual of Gy, [p™°] is the p-divisible group Qp/Zy,.

Definition 10.21. Let G be a p-divisible group over k, viewed as an fppf sheaf, then we define
the Tate p-module by T,G = Hom(Q,/Z,, G(k)).
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10.3 The algebraic fundamental group
10.4 The fundamental group of an Abelian variety

We omit the proof of the following two theorems.

Theorem 10.22 (Serre-Lang). Let X be an Abelian variety over a field k. Let Y be a k-variety
and ey € Y(k). If f: Y — X is an etale covering with f(ey) = ex then Y has the structure of

an Abelian variety such that f is a separable isogeny.

Corollary 10.23. Let X be an Abelian variety over a field k. Let  be an algebraically closed
field containing k, and regard 0 = ex as an (2-valued point of X. Write k; for the separable closure

of k inside €2. Then there are canonical isomorphisms

[[7ex, char (k) =0
0

alg ~ 13 ~Y
1o (Xk,,0) = lim X [n](ks) =
' i X{nlks) Ty X x [[TeX  char (k) =p

t#p

where the projective limit runs over all maps X [nm|(ks) — X[n](ks) given by P — m- P. Further

there is a canonical isomorphism
(X, 0) = 7' (X}, 0) x Gal(ks/k)

Corollary 10.24. Let X be an Abelian variety over a field k, let k C ks be a separable algebraic

closure, and let ¢ be a prime number with ¢ # char (k). Then we have
Hl(st, Zz) = (TgX)V = HOHI(T@X, Z@)

as Zg-modules with continuous actions of Gal(ks/k). Further we have an isomorphism of graded-
commutative Zy-algebras with continuous Gal(ks/k)-action

H*(Xy,, Ze) = \[(TiX)"]

11 Polarizations and Weil pairings

11.1 Polarizations

Proposition 11.1. Let X be an Abelian variety. Let A : X — X! be a homomorphismm and
consider the line bundle M = (id, \)*Zx on X. Then ¢y = A + A

Proof. First we consider the map
0y X x Xt = Xt x X"

it sends (z, €) to the line bundle L = [t} .2 ® 2 ~!]. We claim that it is exactly the point (e, 5(z)).
It is sufficient to prove for (z,0) and (0, €). Since 2|y g0y = Ox, the sheaf L]y, 0y = [Ox] € X,

which corresponds to the point 0 as a scheme. Since #|(), xt = Ox+, we have L|gyxt = [Ox:] €
X% which corresponds to the point 0 € X*. Thus the claim holds true.

Then ¢y = (id, \) 0 o o (id, \)! sends = to A\(z) + X (z). [ |

(©) F.P. (1800010614@pku.edu.cn) 43 2023.5



) FA % K5 Sk G RF T T

Y School of Mathematical Sciences Copital Normal University

11.1 Polarizations

Proposition 11.2. Let X be an Abelian variety over a field k. Let A : X — X! be a homomor-
phism. Then the following properties are equivalent:

(a) A is symmetric;

(b) there exists a field extension & C K and a line bundle L on X such that Ag = ¢r;

(c) there exists a finite separable field extension k C K and a line bundle L on X such that
Ak = @L.

Proof. |

Corollary 11.3. Let X/k be an Abelian variety. Then the homomorphism 3 : NSy, —
Hom®™ (X, X*) induced by ¢ : L — ¢ is an isomorphism.

Proof. We already know it is an injective morphism. Since both group schemes are etale, we can
check it on k. [}

Corollary 11.4. Let X/k be an Abelian variety. Let A : X — X! be a symmetric homomorphism,
and write M = (id, \)*Px. Let k C K be a field extension and let L be a line bundle on X
with A\g = ¢r.

(1) We have: A is an isogeny <= L is non-degenerate <= M is non-degenerate.
(2) If X is an isogeny, then L is effective if and only if M is effective.
(3) We have: L is ample if and only if M is effective.

Corollary 11.5. Let X/k be an Abelian variety. Let A : X — X! be a homomorphism. Then

the following properties are equivalent:
(a) A is a symmetric isogeny and the line bundle (id, \)*%” on X is ample;
(b) A is a symmetric isogeny and the line bundle (id, \)*2? on X is effective;
(c) there exists a field extension £ C K and an ample line bundle L on Xk such that A\x = ¢r;

(d) there exists a finite separable field extension & C K and an ample line bundle L such that
AK = ¢L-

Definition 11.6. Let X be an Abelian variety over a field k. A polarization of X is an isogeny

A : X — X! that satisfies the equivalent conditions in the above corollary.

Since deg(A) = x(L) if A\; = ¢, the degree of a polarization is a square. If X is an isomorphism,

that is, A has degree 1, we call it a principal polarization.

Remark 11.7. Let X be an Abelian variety over a field k. We have an exact sequence of fppf
sheaves
0 — X' — Picx ), — Hom™™ (X, X*) = 0

which gives a long exact sequence in fppf cohomology
0 — X" (k) = Pic(X) — Hom™™ (X, X*) & H} ((k, X*) = ---
Proposition 11.8. Let f : X — Y be an isogeny. If u: Y — Y is a polarization of Y, then

f*u= ftouo fis a polarization of X of degree deg(f*u) = deg(f)? - deg(u).
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Definition 11.9. Let X and Y be Abelian varieties over k. A divisorial correspondence between
X and Y is a line bundle L on X x Y together with rigidification « : Lyo1xy = Oy and
B Lxx{oy = Ox that coincide on the fibre over (0,0).

The correspondences between X and Y form a group Corrg(X,Y).

Proposition 11.10. Let X/k be an Abelian variety. Then we have a bijection

o +1 ~ | symmetric divisorial correspondences (L,a, B)
{polarizaions A\ : X — X'} —

on X x X such that A% L is ample

by associating to a polarization A the divisorial correspondence (L, «, 5) with L = (id x \)*Px
and «, 8 the pull backs under id x A of the rigidifications a g and B».

11.2 Pairings

Definition 11.11. Let f : X — Y be an isogeny of Abelian varieties over a field k. Write
B : Ker(f) = Ker(f)? for the isomorphism.

(1) Define ey : Ker(f) x Ker(f*) = Gy, to be the perfect bilinear pairing given by ef(z,y) =
B(y)(x). If f =nx, then we obtain a pairing

en s X[n] x X'n] = pn,

which we call the Weil pairing.

(2) Let A : X — X' be a homomorphism. We write

e} X[n] x X[n] = pin

n

for the bilinear pairing given by e (21, 22) = e, (21, M(22)). If A = ¢ we also write e” instead of
A

en.

Proposition 11.12. Let f : X — Y be an isogeny of Abelian varieties.

(1) For any k-scheme T" and points « € Ker(f)(T) and n € Ker(f")(T) we have e (n, kx(x)) =
ef(a,n)™!

(2) Let 31 : Ker(f!) = Ker(f)? and B : Ker(f)PP = Ker(f)” be the canonical iso-

~

morphism, and let Ker(f)P? = Ker(f) be the canonical isomorphism. Then the isomorphism
Ker(f) = Ker(f*) induced by sy equals —f3; o B oy~ 1.

11.3 Existence of polarizations, and Zarhin’s trick

Proposition 11.13. Let A : X — X! be a symmetric isogeny, and let f : X — Y be an isogeny.

(1) There exists a symmetric isogeny u : Y — Y such that A = f*u = flopo f if and
only if Ker(f) is contained in Ker()) and is totally isotropic with respect to the pairing ey :
Ker(A) x Ker(\) = G,,. If such an isogeny p exists then it is unique.

(2) Assume that an isogeny p as in (1) exists. Then p is a polarization if and only if A is a

polarization.
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Corollary 11.14. Let X be an isogeny over an algebraically closed field. Then X is isogenous to

an Abelian variety that admits a principal polarization.

Theorem 11.15 (Zarhin’s trick). Let X be an Abelian variety over a field k. Then X* x (X*)4

carries a principal polarization.

12 The endomorphism ring

12.1 First basic result about the endomorphism algebra

Remark 12.1. Recall that the functor Hom(X,Y') : Sch), — Gr sending T to Homrp(Xr,Yr) is
represented by an etale commutative k-group scheme. If k = ks and K D k, the k-valued points
Homy(X,Y) equals the K -valued points Homg (X, Yi).

Theorem 12.2 (Poincare Splitting Theorem). Let X be an Abelian variety over a field k. If Y C
X is an Abelian subvariety, there exists an Abelian subvariety Z C X such that the homomorphism

f:Y xZ — X given by (y,2) — y + z is an isogeny.
Proof. Write i : Y « X for the inclusion. Choose a polarization X : X — X', and let
A ¢ it t
W =Ker(X =5 X' —=Y")
Note that the homomorphism Ay = it o Aoi: Y — Y is again a polarization. Then Ker(\y) =
Y N'W is finite.
Now take Z = W0

red’

Since the kernel of f : Y x Z — X is contained in (Y N Z) x (Y N Z), it is finite, and then f is an
isogeny. |

this is indeed an Abelian variety with dimension dim W = dim X —dim Y.

Definition 12.3. A non-zero Abelian variety X over a field k is said to be simple if X has no
Abelian subvarieties other than 0 and X.

Definition 12.4. We say that X is elementary if X is isogenous to a power of a simple Abelian

variety, i.e., X ~j Y for some m > 1 and Y simple.

Remark 12.5. We sometimes use the terminology “k-simple” since an Abelian variety which is
simple over k may not be simple over a field extension. But if k is separably closed, then X, is

simple for every extension L D k.

Corollary 12.6. A non-zero Abelian variety over k is isogenous to a product of k-simple Abelian

varieties.

Definition 12.7. Let k be a field. We define the category of Abelian varieties over k up to isogeny,
denoted by QAV /., to be the category with as objects Abelian varieties over k£ and with

Homgav ,, (X,Y) = Hom"(X,Y) £ Homay , (X,Y) ©7 Q

Definition 12.8. If X and Y are Abelian varieties over k then an element f € Hom%(X,Y) is
called a quasi-isogeny if f is an isomorphism in the category QAV /.. An element f € Hom"(X,Y)

is a quasi-isogeny of and only if there is a non-zero integer n such that nf is an isogeny from X
to Y.
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Corollary 12.9. If X is k-simple then End{(X) is a division algebra. For X we have
End)(X) = My, (D1) X - -+ X My, (Dy)

Lemma 12.10. Let X and Y be Abelian varieties over a field k, and let f € Hom(X,Y).

(1) Let ¢ be a prime number, ¢ # char (k). If T;(f) € Homg, (1,X,T,Y) is divisible by ¢,
then f € Hom(X,Y') is divisible by ¢™.

(2) Let p be a prime number. If f[p>=] € Hom(X[p>],Y[p>]) is divisible by p™ then f €
Hom(X,Y) is divisible by p™.
Proof. (1) We have f vanishes on X[¢™](ks). Note that this is etale, hence f factors through
[0 x.

(2) Similar with (1). [ |
Proposition 12.11. Let X and Y be Abelian varieties over a field k.

(1) If £ is a prime number, ¢ # char (k) then the Zs-linear map
Ty : HOIn(X, Y) ® Ly — Hong (TgX, TgY)

given by f ® ¢+ c¢-Ty(f) is injective and has a torsion-free cokernel.

(2) If p is a prime number, the Z,-linear map
® : Hom(X,Y) ® Z, — Hom(X [p*], Y [p™])
given by f ® ¢+ ¢f[p>] is injective and has a torsion-free cokernel.

Corollary 12.12. For any Abelian varieties X and Y over k, Hom(X,Y) is a free Z-module of
rank at most 4 dim(X) dim(Y").

Proof. This follows from that Homg, (T, X, T;Y) is a free Z;-module of rank 4 dim(X') dim(Y") (note
that Ty X is a free Zy-module of rank 2 dim(X)). [ |

Corollary 12.13. If X is a g-dimensional Abelian variety over a field k& then its Neron-Severi
group NS(X) is a free Z-module at most 4¢°.

Proof. We have a canonical isomorphism NS(X) = Hom™™ (X, X?). [ |

Corollary 12.14. Let X and Y be Abelian varieties over a field k. Fix a separable algebraic
closure k£ C k,. Then there is a finite field extension k& C K inside ks which is the smallest field
extension over which all homomorphisms from X to Y are defined, by which we mean that K has

the following properties:
(a) for any field extension K C L we have Homg (X, Yi) — Homp(Xp,Yr);

(b) if Q is a field containing ks and F C Q is a subfield with ¥ C F and Homp(Xp, Yr) =
Homg(Xq, Yq), then K C F.

Proof. The group scheme Hom(X,Y') is an etale group scheme. Then the theory is just the Galois
descent. |
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12.2 The characteristic polynomial of an endomorphism

Definition 12.15. Let X be an Abelian variety of dimension g over a field k. If W is a Q-vector
space then a map 7 : End(X) — W is said to be homogeneous of degree m if y(n - f) = n"™ - y(f)
for all f € End(X) and all n € Z. Any homogeneous map v naturally extends to a map = :
End’(X) — W.

Proposition 12.16. The map deg : EndO(X ) — Q is a homogeneous polynomial map of degree
2g. This means that if ej,---,e, is a basis for EndO(X) as a QQ-vector space, then there is
a homogeneous polynomial D € Qlt1,--- ,t,] of degree 2¢g such that deg(cie; + -+ + cuey) =
D(cy, - ,cy) for all ¢; € Q.

Definition 12.17. Let X be an Abelian varieties over k. If f € End(X) then by the proposition
above there is a monic polynomial P = Py € Q[f] of degree 2g such that P(n) = deg([n]x — f)
for all n € Z. We call P the characteristic polynomial of f. If P = Zfi 0 a;t' then we define the
trace of f by tr(f) = —agg—1. Note that ag = deg(—f) = deg(f), we also call it the norm of f.

Theorem 12.18. Let X be an Abelian variety over a field k. Let £ be a prime number different
from char (k). For f € End’(X), let Pp; € Qu[f] be the characteristic polynomial of V;f €
Endg,(V,X), that is, P (t) = det(t - id — Vi f). Then Py = Py. In particular, the characteristic
polynomial of V;f has coefficients in Q and is independent of /.

Corollary 12.19. Let f € End’(X), then P;(f) =0 € End’(X)

Proof. Since Py ¢(Vef) = 0 € Endg, (14 X), and Py r(Vef) = Pr(Vef) = Ve(Pr(f)), then Pr(f) =
0. |
Corollary 12.20. If f € End(X) then Pf has integral coefficients.

Proof. Let f € End(X). Because End(X) is finitely generated as an additive group, there is

a monic polynomial @ € Z[t] such that Q(f) = 0. Then V,(Q(f)) = Q(Vif) = 0. Thus all

eigenvalues of V; f are algebraic integers. Hence P,y = Py has integral coefficients. |

Corollary 12.21. For f,g € End’(X) we have the relations

deg(fg) = deg(f) - deg(g), tr(f+g)=tr(f)+tr(g), tr(fg)=tr(gf)

12.3 The Rosati involution

Definition 12.22. Let A : X — X? be a polarization. Then for any f € End’(X) we can form the
element fT = A"1ofto): X — X. More explicitly, if f = (1/m)-g, and assume that po\ = [n]x,
then fT = (1/mn)(po gt o \) € End®(X). The map { is an involution of the algebra End®(X). It

is called the Rosati involution associated with .

Proposition 12.23. If A\, : X — X! are two polarizations, then a £ X" topu € EndO(X). If §is

the Rosati involution of p, then ff =a 1o ffoa.

Proposition 12.24. Since deg(f") = deg(f) and [n]& = [n]x, we have Pyt = Py. In particular,
tr(f) = te(f).
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Lemma 12.25. Let X be an Abelian variety over a field k. Let £ be a prime number with
¢ # char (k). Let A : X — X! be a homomorphism, and t the associated Rosati involution, and
let B* : VX x Xo X — Qg(1) the Riemann form of . Then for all f € End(X) and all z, y € V, X

we have
ENVif(2),y) = EXN=, Vif(y))

Proof. Let E : VX x X;X* — Q be the pairing such that E*(z,y) = E(z, (V;\)(y)).
Then

BNz, Vef ') = B(z, (Ve o Vef 1) (y) = E(x, ViAo fN)(y) = B(x, (Vef* o Vid)(y))

Recall that this equals to E(Vof(z), Ved(y)) = EMNVef(z),y). [ |

Proposition 12.26. Let X be an Abelian variety over a field k. Let A be a polarization of X, and
let f +— f! be the associated Rosati involution on End’(X). Then the map NS(X) — End’(X)

sending [M] to A~! o ) induces an isomorphism of Q-vector spaces
i : NS(X) x Q5 {f € End’(X)|f = fT}

In particular, the Picard number of X, that is, the rank of NS(X), equals the Q-dimension of the

space of t-symmetric elements in End®(X).

Proof. Recall that there is a natural isomorphism NS(X) = Hom®™(X, X?), then
NS(X) ® Q = Hom*¥™ (X, X*)

Now consider the isomorphism Hom?(X, X*) = End®(X) sending f to A~! o f, the image of f is
f-symmetric if and only if f = f!. The result then follows. |

Theorem 12.27. Let X be an Abelian variety of dimension g over a field k. Let 1 be the Rosati
involution associated with a polarization A.
(1) If A = wy, for some ample bundle L then for f € End(X) we have

(L)~ - er(f*L)
Cl(L)g

w(ffh) =292

(2) The bilinear form End’(X) x End’(X) — Q given by (f,g) + tr(f - g') is symmetric and

positive definite.

Proof. (1)
(2) Reduce to the case k = k. [ |
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12.4 The Albert classification

13 The Fourier transform and the Chow ring (skip)

13.1 The Chow ring

Definition 13.1. Let X be a variety over a field k. The group Z,.(X) of r-cycles on X is defined
as the free Abelian group on the r-dimensional closed subvarieties on X. For r = dim(X) — 1 an

r-cycle is the same as a Weil divisor.

An r-cycle a € Z,(X) is said to be rationally equivalent to 0, denoted by o ~ 0 or « ~yut 0, if
there exists (r + 1)-dimensional subvarieties Wy, --- ,W,, of X and rational functions f; € k(W;)*
such that o = " | div(f;). The cycles rationally equivalent to 0 form a subgroup Rat,(X) of
Z-(X) and we define the Chow group of r-cycles to be the factor group

CHT(X) = ZT(X)/Ratr(X>

We set CH"(X) = CHgjm(x)—r(X), this is called the Chow group of codimension r cycles.
Let CH*(X) = P, CH"(X) and CHp(X) = CH*(X) ® ZQ. If X is a no-singular variety, there

exists an intersection pairing
CH"(X) x CH*(X) — CH""*(X) — CH"**(z)

which makes CH*(X) to be a commutative graded ting with identity. This ring is called the Chow
ring of X.

Proposition 13.2. Let f : X — Y be a morphism of k-varieties. Then we have a pull-back
homomorphism f* : CH*(Y) — CH*(X). If f is flat, then f* is given by f*[V] = [f~1(V)] for
closed subvariety V C Y.

Remark 13.3. Assume that f : X — Y is proper, and V. C X is a closed subvariety, then
W = f(V) is a closed subvariety of Y. If dim(W) = dim(V'), let deg(V/W) be the degree of
the field extension [k(V) : k(W)] defined by f, if dim(W) < dim(V') let deg(V/W) = 0. We set
f«[V] = deg(V/W)-[W]. Then f. extends to a homomorphism f. : Z.(X) — Z.(Y'), which induces
a homomorphism f, : CH"(X) — CH"(Y').

Further, we have the projection formula
F((f*n) -€) =n- fue

If there is a Cartesian square

with h flat and [ proper, then we have
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Remark 13.4. Let X be a variety. Let K°(X) be the Grothendieck group of vector bundles on X.
Then KY(X) has a natural structure of a commutative ring, with product [E1]-[Es] = [E1®E»]. Let
Ky(X) be the Grothendieck group of coherent sheaves on X. Then Ko(X) has a natural structure
of a K°(X)-module, by [E]-[F] = [E®o, F|. If f : X =Y is a morphism of varieties then we have
a natural ring homomorphism K°(Y) — K°(X). If f is proper then we have a homomorphism
fe it Ko(X) = Ko(Y) given by f.[F] = Zizo(_l)i[Rif*F]-

If X is nonsingular, there is a natural homomorphism K°(X) — Ko(X). This is in fact an
isomorphism (see Hartshorne ex II1.6.9). Then we may write K(X) for K°(X).

Definition 13.5. There is a ring homomorphism
ch: K(X) — CHg(X)

called the Chern character. For a line bundle L with associated divisor class £ = ¢1(L) € CH@(X ),
it is given by
[L] — e

(note that e only involves a finite sum, as CH(X) = 0 for i > dim(X)). Further this gives an
isomorphism

Kq(X) — CHgp(X)

If f: X — Y is a morphism between non-singular varieties then the Chern character commutes
with f*, that is, f*(ch(a)) = ch(f*(a)) for « € K(Y).

Definition 13.6. Let X and Y be nonsingular varieties. Elements in CHg(X x V') are called
correspondences from X to Y. For a correspondence £ € CHg (X xY') the transpose correspondence

t¢ = 5,(€), where s : X x Y — Y x X is the morphism reversing the factors.

Assume Y is complete. If Z is a third non-singular variety then we can compose correspon-
dences: Given ¢ € CHg(X x Y) and ¢ € CH(Y x Z) we define their composition, which is a

correspondence from X to Z, by

Yoy =pxz«(Pxy(p) - pyz(¥)) € CHy(X x 2)
Here pyy denotes the projection X x Y x Z — X x Y. We have (1) o ) = tp o tap.

If f:X — Y is a morphism with graph map vy : X — X x Y, then the correspondence
[y = [y7(X)] in CH(X x Y) is called the graph correspondence of f. Note that I'y = v, .([X]),
then Fgf = Fg o Ff.

Assume that X is complete. A correspondence I' from X to Y gives rise to a homomorphism
of groups v : CH*(X) — CH*(Y) by

v(a) = py«(px (@) -T)
IfT' =Ty theny = f.. T =Ty then v = f*.

Lemma 13.7. Let S be a smooth quasi-projective k-scheme. Let ¥'(S) be the category of smooth
projective S-schemes. If we are given S-morphisms f : X — Y and g : Y — Z, with classes
a € CH(X xsY) and 8 € CH(Y x5 Z). Then we have

Oy oa = (idx x g)«(@) Bo[l'y] = (f xidz)"p
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similarly, if f/: Y — X and ¢’ : Z — Y are also morphisms in #'(S) then

[Ty]oa=(idy x g)"(a) Bo[Tp]=(f xidz).(8)
14 Jacobian Varieties (skip)

15 Dieudonne theory

15.1 Dieudonne theory for finite commutative group schemes and for
p-divisible groups

Definition 15.1. Let R be a commutative ring with identity. Let o be an endomorphism of R.
If My and My are (left) R-modules then by an a-linear map f : M; — My we mean an additive
map with the property that f(rm) = a(r) - f(m) for all r € R and m € M;. Such a map is also

called a semi-linear map with respect to a.

Remark 15.2. Consider the module Ml(a) = R ®R,o M2 obtained by . Then an a-linear map
f: My — My gives rise to an R-linear homomorphism f* : M — My via f*(r @ m) = r - f(m).
Conversely, for a R-homomorphism g : Ml(a) — My we can associate the o-linear map ¢° : My —
My defined by ¢°(m) = g(1 ® m). Further, we have

(=1 (@)f=g

Definition 15.3. The skew polynomial ring R[t; o] is the group R[t] equipped the multiplicative
operator as
t-r=a(r)-t, YreR

In other words, the variable ¢ does not commute with the coefficients but is “a-linear”.

Definition 15.4. For the definitions or properties of Dieudonne modules, you can see my note

on Demazure’s famous book “p-divisible groups”.

15.2 Classification up to isogeny

Remark 15.5. Throughout this section, k denotes a perfect field of characteristic p > 0. We write
W =W (k) for its ring of Witt vectors, L for the fraction field of W, and o for the automorphism
of W (and also of L) induced by the Frobenius automorphism x +— P of k.

Definition 15.6. If N is a finite dimensional L-vector space, by a W-lattice in L we mean a
W-submodule M C N such that the natural map M ®@w L — N is an isomorphism. (Equivalent:
M is free of rank dimy (N) as a W-module.)

If My and M>s are W-lattices in N then so are M; + Ms and M N Ms. We define
X(My : My) = lengthy, (M/Ms) — lengthy, (M /M)

where M is any W-lattice in N containing both M; and Mo.

(©) F.P. (1800010614@pku.edu.cn) 52 2023.5


https://phanpu.github.io/2023/09/26/p-divisible-groups/

) HAR 3 K5 Ak T RF T T . . .
J  School of Mathematical Sciences Capital Normal University 15.2 ClaSSlﬁC&thn up tO lsogeny

Definition 15.7. A pair (N, F) is called an F-isocrystal over k, if N is a finitely-dimensional

L-vector space and F' is a bijective o-linear operator F': N — N.

Definition 15.8. Let a € Z. Then a 0% F-crystal over k is a pair (M, F') consisting of a free
W-module M of finite rank, together with a o®-linear injective map F': M — M Qw L.

A morphism of o F-crystals f : (M, F1) — (Mas, F5) is a homomorphism f : My — Mo
of W-modules (so a W-linear map) such that fo Fy = Fy o f. We denote by o-F-Crys . the

category of g% F-crystals over k that is thus obtained.

The map F is not required to take values in M it self; it is allowed to have “denominators”.
If F(M) C M then we say that the crystal is effective. The condition F' is injective implies that
the induced map M ®w L — M ®w L is bijective. We shall use the notation Mg = M ®@w L =
M ®z, Qp, = M @z Q.

Remark 15.9. If a = 0 then a o®-F-crystal is of course just a finite free W-module M together
with a linear injective map M — Mg.

Ifa =1 then by an F-crystal we mean a o-F-crystal, then we write F'-Crys . for o-F-Crys .

Proposition 15.10. The category DM?rlfe of torsion-free Dieudonne modules is equivalent to the
full subcategory of F-Crys ;. consisting of all F-crystal (M, F') with p- M C F(M) C M.

Proof. Since F(M) is of the same dimension with M,pM, F must be injective. As a result, we
can define V = F~1p. Thus, the Dieudonne ring D acts on M naturally. We can also verify that

this action is torsion-free. [ |

Definition 15.11. A homomorphism of 0% F-crystals f : (M, fi1) — (Ma, f2) is called an isogeny
if the induced map M; g — Mg is bijective. Thus if one wants to study o®-F-crystals only up

to isogeny, it suffices to know the L-vector space Mg together with its o®-linear Frobenius.

Definition 15.12. Let a € Z. Then a 0% F-isocrystal over k is a pair (N, F') consisting of an L-

vector space IV of finite dimension, together with a bijective, o®-linear endomorphism F : N — N.

A morphism of F-isocrystals f : (Ny, Fy1) — (Ng, F») is an L-linear map f : N; — Na such
that fo Fy = Fyo f. We denote by o-F-Isoc/, the category of o”-F-isocrystals over k that is
thus obtained.

Proposition 15.13. If (M, F') is a 0% F-crystal then (Mg, F') is a 0% F-isocrystal. In the other
direction, if (N, F') is a 0% F-isocrystal then for any W-lattice M C N the pair (M, Fjy) is a
o F-crystal.

Remark 15.14. The category o®-F-Isocyy is Abelian. The category 0%-F-Crys) is additive but
not Abelian. Further, if (M, F) is a c®-F-crystal and M' C M is a primitive W -submodule that
is stable under F then M /M' with Frobenius induced by F is again a o®-F-crystal. Here we recall
that a W-submodule M' C M is called primitive if M /M’ is torsion-free.

Definition 15.15. Let (M, F') be a 0% F-crystal over k. The rank of M as a W-module is called
the height of (M, F'). Similarly, the height of a 0%-F-isocrystal (N, F') is defined as the L-dimension

of the underlying vector space N.
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15.2 Classification up to isogeny

Writing N = Mg we have that M and F(M) are both W-lattices in N. Hence there exists
integers r < R such that p* - M C F(M) C p" - M, and we can define ord(F), the p-adic order of
F, by

ord(F) = max{r € Z|F(M) C p" - M}

Definition 15.16. Let (M, F') be a 0% F-crystal of height h over k. By the theory of modules over
a PID there exists ordered W-bases {e1, - ,en} and {f1,---, fn} for M, together with integers
r1 < rg--- < rp, such that F(e;) = p" - f; for all i. The sequence of integers r; does not depend
on the chosen bases. The polygon defined by this sequence is called the Hodge polygon of (M, F).
We shall denote the Hodge slopes of (M, F) by pu1 < pg < -+ < py, let h; = hi(M, F) be the
multiplicity of ¢ € Z as Hodge slope, the numbers are called the Hodge numbers. The definition

of slopes and multiplicities can be seen in the following remark.

Remark 15.17 (How to draw a graph). A polygon is given by a finite sequence of rational
numbers r1 < rg < -+ < 1. One can also describe it by giving a strictly increasing sequence
A < Ay < --- < N together with multiplicities my,ma,--- ,my (in Zso), where the \; are the

values that occur in the sequence of r;, and m; is the number of times that \; occurs.

The numbers \; are called the slopes of the polygon. In practice it is often convenient to have
a graphical representation of a polygon. For this we consider the graph of the piecewise linear
continuous function ¢ : [0,n] — R that has ¢(0) =0 and ¢(i) =r1 +r2+---+1r; for 1 <i <mn,
and that is extended linearly between consecutive integers. In terms of the slopes \; this means

that ¢ is linear with slope \; on the interval [mi+---+ mj_1,my+ -+ mj].

Remark 15.18. Note that, all slopes of the Hodge polygon are integers. The smallest Hodge slope,
p1 = 11 = ord(F), is the largest integer r such that F(M) C p" - M, and we can recognize this
as the integer the integer defined previously. The largest Hodge slope, ry,, is the smallest integer s
such that p* - M C F(M).

Example 6. Let G be a p-divisible group over a perfect field k of characteristic p. We define the
Hodge polygon of G to be the Hodge polygon of its Dieudonne module. The only slopes that can
occur are 0 and 1, say with multiplicities hg and h;. We have hg 4+ hy = h, the height of G, and
hy = dim(G). In particular, since the Dieudonne module of X [p™] is equal to

M(X[p™]) = lim M(X[p"]) = lim(lim Homy (X[p"], W) = lim (W (k)/p"W (k))*) = W (k)

—,m

the Hodge polygon of an Abelian variety X of dimension g is the polygon

(29,9)

with g times slope 0 and g times slope 1.
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Lemma 15.19. Let k be a perfect field of characteristic p.
(1) Let (M, F) be a 0% F-crystal of height h over k. Then for all n € N we have

ord(F™) - ord det(F)

d(F) <
ord(F) < n < "

(2) Let (IV, F') be a 0% F-crystal over k. For any W-lattice M C N the limit

lim ord(Fy))

n—00 n

exists, and the limit is independent of the choice of the lattice M.

Proof. (1) [ |

Definition 15.20. Let (N, F) be a 0 F-isocrystal over k. Then we define the first Newton slope
of (N, F'), notation A\ = A\ (N, F'), to be the number lim, o ord(Fy;)/n, where M C N is any
W-lattice. We will prove that the first Newton slope is a rational number. For a 0% F-crystal we
let \{(M, F) = A\ (Mg, F).

ord det(F)

By the above lemma, we have pi (M, F) < A\ (M, F) < .

M (M, F).

.Ifh =1, then (M, F) =

Lemma 15.21. Let (N, F) be a 0% F-isocrystal over k. Then we have A\{(N,p"F") = n -
M (N, F) +m for all m,n € Z.

Lemma 15.22. Let (N, F') be a 0% F-isocrystal of height h over k.
(1) If there exists a W-lattice M C N such that F"*1(M) C p~' - M, then (N, F) is effective.
(2) Let r, s be integers with s > 0 and A; (N, F') > r/s. Then there exists a W-lattice M C N
with F*(M) C p"(M).

Proof. (1) Let M’ = M + F(M) + --- + F"(M), which is again a W-lattice in N. We have
Z;Lié FI(M'") is exactly the space containing M, F(M),--- , F?*1(M). Thus,

h+l 2h41 h
SFIM)y=Y FI(M)=M+> (F* M) cpt M
j=0 7=0 J=0
Now consider the ascending chain
h+1 '
M CM+FM)C--C> FI(M)Cp ' M
§=0
As p*M'/M' is a k-vector space of dimension h, there exists an index n € {0,1,---,h} with

Z?:on(M/) = Z;Li&FJ(M’) Then M" = Y70 Fj(M') is a lattice with F'(M") C M", so
(N, F) is effective.

(2) Let F' = p'="(h+1) ps(h+1) We have Ay (N, F') = s(h+1)A\ (N, F)+1—7(h+1) > 1. Hence
by the definition of A\; for any W-lattice M C N there exists an n € N such that ord((F},)") > n,
that is, (F},;)"(M) C M. Let M' = M + F'(M) + --- + (F")»1(M). Clearly, F'(M’') C M'.
Thus (p~"F*)"*1(M') C p~'- M’. Hence by (1) there exists a W-lattice M” C N such that
p—TFS(M//) g M//' .
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Proposition 15.23. Let (N, F) be a 0% F-isocrystal of height h over k. Let d = orddet(F).
Then there exists integers r,s with 0 < s < h and r < d and a W-lattice M C N such that
M(N,F) = T and ord(F};) = r. In particular, A\; € Q_

s <

e

Proof. We can choose integers r, s such that s € [1, h] and

r 1
M— - < —c
= 8‘_S(h+1)

1
Let F/ = p~"F*. Thus |\{(N,F")| = [s\(N,F) —r| < T By the above lemma (2), the
1
inequality A(N, F') > — implies that there exists a W-lattice M’ C N with (F')"*+1(M') C

p~!- M’'. Thus by (i) from the above lemma, there exists a W-lattice M C N with F'(M) C M.

Thus, A\ (N, F') > ord(F’) > 0. By the same argument for F” = (F')~!, we have A\ (N, F') = 0.
Then ord(F},) = 0 and \ (N, F) = ", And further ord((F},)®) = . [ |
s

Corollary 15.24. With the same hypothesis above, if there exists integers r and s > 0 and a

d
lattice M C N with F*(M) =p" - M then \{(N, F) = - 7 and F"(M) = p?- M. Conversely,
s

d
if \{(N,F) = 7 then there exists a lattice M C N such that F*(M) = p? - M.

Definition 15.25. An F-isocrystal (N, F') is called isoclinic if there exists a W-lattice M C N
and integers r and s > 0 such that F¥(M) = p" - M; the quotient r/s is then called the slope of
(N, F).

Proposition 15.26. Let k be a perfect field of characteristic p.

(1) If (N, F) is an isoclinic o% F-isocrystal over k then any sub-isocrystal and quotient-

isocrystal is isoclinic too, of the same slope.

(2) If (N1, F1) and (Na, F») are isoclinic o%-F-isocrystals over k of different slopes then

Homga_p_tsoc,, (N1, F1), (N2, F2)) = 0

(3) Given a o F-isocrystal (N, F') over k and one of its slopes A € Q, there exists a unique

maximal sub-isocrystal of (N, F') that is isoclinic of slope .

Example 7. Let A € Q and write A = d/h with h > 0 and gecd(d, h) = 1. Define, for a € Z\{0},
a g% F-crystal .#) over k by taking #\ =W -e1 @ ---® W - e, with

ei+1, 1<i< h
Fei) = { L
P, i=h
In terms of modules over the ring W[F] = W][F;0% we can also say that we take .#) =
WIF]/WIF] - (F" — p). Tt is clear that F* = p? on .#,, so ., is isoclinic of slope A.

It follows from the above proposition (1) that, for any sub-isocrystal Ay C A3 = 4\ Qw L,
A" is isoclinic of the slope d/h. This means d'/h' = d/h. But ged(d,h) = 1 and h' < h, then
d = d,h = h. Hence .4, is a simple isocrystal.

Theorem 15.27 (slope decomposition). Let (N, F) be a 0% F-isocrystal over a perfect field &k of
characteristic p. For A € Q let (Ny, F) be the maximal sub-isocrystal that is isoclinic of slope A.
Then we have a decomposition of g%~ F-isocrystals (N, I') = D, cq(Na, F).
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Definition 15.28. Let (N, F) be a 0% F-isocrystal over k. We define the Newton polygon of
(N, F) to be the polygon whose slopes are the numbers A € Q with N, # 0, and where we take
each A with multiplicity m) equal to the height of (Ny, F') (i.e. the L-dimension of Ny).

If (M, F) is a 0% F-crystal then we define its Newton polygon to be the Newton polygon of
the associated isocrystal (Mg, F).
Note that ord(D(My, F)) = minyeg(ord(My, F)) = min(A (N, F)), then A\ (N, F) is exactly

the minimal Newton slope.

Lemma 15.29. Let k& be an algebraically closed field of characteristic p. Let v € Z\{0}, and
write .Z C k be the unique sub-field with p*! elements.

(1) Let V be a finite dimensional k-vector space, and let ¢ : V' — V be a bijective Frobj-linear
map. Further let Vj = {v € V|p(v) = v}, which is an .#-subspace of V. Then the natural map
k ®g Vo — V is an isomorphism.

(2) Let M be a free W (k)-module of finite rank, and let F': M — M be a bijective o"-linear
map. Further let My = {m € M|F(m) = m}, which is an W(.%)-submodule of M. Then the
natural map W (k) ®yy () Mo — M is an isomorphism.

Theorem 15.30 (Dieudonne). Let & = k be an algebraically closed field of characteristic p,
and let a € Z\{0}. Then the category o F-Isoc/ is semisimple. The simple objects are the
isocrystals Ny, for A € Q. If (N, F) is any o%-F-isocrystal over k then we have

o R
(v, )= o "
A€Q
here h()) is the height of .4} and where my = dim,(Nz) € Zy is the multiplicity of A as a Newton
slope of (N, F').
Remark 15.31. This statements in the theorem do not hold for a = 0.

Theorem 15.32 (Newton is over Hodge). Let (M, F') be a 0% F-crystal of height h over k. Then
the Newton polygon of (M, F') lies on or above its Hodge polygon, and the two polygons have the
same begin point, namely (0,0), and end point, namely (h, ord det(F)).

15.3 The Newton polygon of an Abelian variety
Definition 15.33. Let X be an Abelian variety of dimension g over a field of characteristic p > 0.

Then X is said to be ordinary if its Newton polygon is given by 0919; this is equivalent to the

1\
condition that f(X) = g. We say that X is supersingular if its Newton polygon is given by (2> .

16 Abelian varieties over finite fields

16.1 The eigenvalues of Frobenius

Definition 16.1. Let ¢ = p™ and X a scheme over IF,. Let mx be the “iterated relative Frobenius”

(m) m
Fypg, X = X®™.
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For any k D F,, mx acts on X (k) by sending « : Spec(k) — X to mx ox. This is equal to

TSpec(k) © T-

Proposition 16.2. If we have an embedding X < PV over F, then mx sends (ap : a1 :---:an)
to (af :af :---:a¥). Then

X(Fgn) = {x € X(Fy)|rx () = x}

Proposition 16.3. Since for any homomorphism of Abelian varieties f : X — Y we have fory =

Ty o f, mx commutes with all endomorphism of X, and then 7 is in the center of End®(X).

Definition 16.4. Let fx = Pr, be the characteristic polynomial of 7x. It is a monic polynomial
with degree 2g with coefficients in Z.

Proposition 16.5. Let X be an Abelian variety over [F,.
(1) Let ¢ be a prime number, ¢ # p. Then Vy(7x) is a semisimple automorphism of V,X.

(2) Assume that X is elementary over Fy, (i.e., isogenous to a power of a simple Abelian variety).

Then Q[rx] is a field, and fx is a power of the minimum polynomial f&x of mx over Q.

Theorem 16.6. Let X be an Abelian variety of dimension g over F,.
(1) Every complex root o of fx has absolute value |a| = /q.

(2) If v is a complex root of fx then so is @ = ¢/«, and the two roots occur with the same

multiplicity. If & = /q or a = —,/q occurs as a root then it occurs with even multiplicity.

Proof. (1) If X = X3 X --- X X then V;X = V; X1 @& --- @ VX as Qp-modules. Thus fx =
fx, -+ fx.. Then it suffices to show when X is simple.

Definition 16.7. For Y a scheme of finite type over F,, then the number N,, = |Y(Fgn)| of
[Fyn-rational points of Y is finite. Then the zeta function of Y is defined by

Z(Y,t) = exp <§: Ny, - t:)

n=1

Theorem 16.8. Let X be an Abelian variety of dimension g over Fy. Let {a1,---,as} be the

multiset of complex roots of the characteristic polynomial fx, so that

fx) =TJt =)
If I is a subset of {1,---,2g}, define ay = I;cr0v;.

(1) For any positive integer n we have

2g 2g ' J
X (F)l = [JA —af) =D (=1) - tu(wk; /\ VeX)
i=1 =0

where ¢ is any prime number different from p and where by tr(z%) we mean the trace of the
automorphism A7 Vy(r%%) of N\ Vi X.
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16.1 The eigenvalues of Frobenius

(2) The zeta function of X is given by

PiP3--- Py

Z(X,T) =
( ? ) POPQ“’PQQ

where P; € Z[t] is the polynomial given by

J
Pj: H(l—t‘()q):det <I—t-7TX;/\VgX>

=4

1
(3) The zeta function satisfies the functional equation Z(X; Tt) =Z(X;t)
q
Proof. (1) The characteristic polynomial Pry of 7% is equal to [](t — of'). Note that the kernel
of the isogeny id — 7% on X (F,) is premsely X (Fyn). Since F, is algebraically closed, | X (Fyn)| =

deg(id — 7%) = Pry (1) = [[32,(1 — o).

Note that for an linear operator 7' € End(V), suppose a; is an eigenvalue of T such that
T-e; = a;- e for a basis {e;}, then AT - (e;) = as - (e7), where I is any indexed set with
cardinality j and e = A,c;ei € N V. Thus the set of eigenvalues of AT € End(A\’ V) is
precisely the set of ay.

Following the above argument the eigenvalues of A\’ Vy(r’) are the numbers of with |I| = 7.

Then the second identity follows by expanding [[(1 — o).

(2) We use the following fact: for an endomorphism ¢ € End(V) we have an identity of formal

power series
n

- t
exp (Z tr (™ V) - n) = det(id —t - p; V)71
n=1

Applying (1) we have

oo 29 J n
Z(X;t) =exp ZZ(—l)j'tr<WX,/\V )t

n=1 j=0

ﬁ (Ztr <ﬂx /\sz) tn>(1)j

(-1t

29 J
=[] det (id—t.wx;/\vgx>

j=0

% (~1H
=[] |J[Q-¢t an

3=0 [|1=j

Then the set of P; H| I|:j(1 — t - ay) satisfies the property. Obviously P; has coefficients in Z

since fx does.

(3) Note that H?i1 a; = ¢9, we have

Py =] (1—35'15) = |11 <_tj[g> 'Pj(qslzt>

]=J =i

NG, G092 p. L)
(~0)%h gl (L
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Then we can check that .
(X, t)=2Z(X, —
(X.1) = Z(X, )

16.2 The Hasse-Weil-Serre bound for curves (skip)
16.3 The theorem of Tate

Preliminaries

We first list some properties for Abelian varieties.
Proposition 16.9. Let X and Y be Abelian varieties over a field k.

If ¢ is a prime number, ¢ # char (k). Then the map

Zy ® Hom(X,Y) — Hom(7T,X,T;Y)

is injective, and has a torsion-free cokernel.

Proposition 16.10. Let X be an Abelian variety over a field k. Also, let £ be a prime number
with ¢ # char (k). For any Gal(k/k)-stable submodule W of finite index in 7, X, then there is an
Abelian variety Y and an isogeny u : ¥ — X such that W is exactly the image of the induced
map

Tgu : TgY — TKX

Proposition 16.11 (Zarhin’s trick). Let X be an Abelian variety over a field k. Then X4 x (XP)4

carries a principal polarization.

Proposition 16.12. Up to isomorphism, an Abelian varieties has only finitely many direct factors.

The proof

We first do some reductions.

Proposition 16.13. The map

Ty : Z¢ @ Hom(X,Y) — Hom(T; X, TgY)Gal(kS/k)
is an isomorphism if and only if the map

Vi : Q@ Hom(X,Y) — Hom(V,.X, VpY )Gal(ks/k)

is an is an isomorphism.

Proof. By 16.9 the map Ty is injective and Coker(7}) is torsion-free (hence free). Then T is an
isomorphism if and only if Coker(7y) is free of rank 0, and further equivalently Coker(7;) ® Qy is

a Oth-dimensional vector space. Now the result follows from that Qy is flat over Z;. |
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Proposition 16.14. If Z is an Abelian variety over k such that
Q¢ ® End(Z) — End(V,z)Gks/F)
is an isomorphism, then for any Abelian varieties X, Y over k, the map
Q; ® Hom(X,Y) — Hom(V, X, V,Y)Gal(ks/F)

is an is an isomorphism.

Proof. Let Z = X x Y. Then, there are decompositions
Q ®End(Z) = Q¢ ® End(X) © Q ® Hom(X,Y) ® Q; ® Hom(Y, X) & Q; ® End(Y)
End(V;2)% = End(V,X)% @ Hom(V, X, V;Y)% & Hom(V,Y, V;X)“ @ End(V,Y)%

where G = Gal(ks/k). The result then follows immediately. [ |

Now we consider a “finiteness condition”, which is denoted by Fin(X/k): up to isomorphism
there are finitely may Abelian varieties Y over k for which there is an isogeny X — Y of degree a

power of £.

Lemma 16.15. Under the assumption Fin(X/k), for every sub-vector space W C V,X that is
stable under Gal(ks/k), there exists an element u € Qp ® End(X) such that W = u(V,X).

Proof. Let W, =W NTy, X +¢"-TyX. Then {"- T, X CW, CT,X. W, is then of finite index in
Ty X, and by 16.10 it is the image of Tyv,, : Ty X,, — Ty X, where v,, : X,, — X is an isogeny.

By the assumption Fin(X/k), there is a sub-sequence {n;} such that
Xp, & Xp, 2
Fix an n € {n;}, let w; be the composite
wis X U X, S X, S X

Then w; is an element in Q; ® End(X). Choose an element u € Q; ® End(X) be the limit of a
sub-sequence. Then u(V,X) = (limv,(VX,)) ® Q = Q; @ imW,, = W. [ |

Now we return to the proof of Tate conjecture, in fact, we will prove a more general version.

Theorem 16.16. Let X be an Abelian variety over an arbitrary field k, and let £ be a prime

number different from char (k). Assume that 16.15 is true for X and X2, then the representation
pe : Gal(ks/k) — GL(V, X)
is semisimple and the map
Q¢ ® End(X) — End(V, X )Gal(ks/k)

is an isomorphism.
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Proof. Suppose we have a Galois-stable subspace W C V,X. By 16.15, there exists an endomor-
phism u € Q; ® End(X), such that W is exactly the image of u : V;X — V,X. We consider
the right ideal u - (Q; ® End(X)), since Q; ® End(X) is a semi-simple algebra, u - Q; ® End(X)
is generated by an idempotent e. In addition, W = u(V;X) = e(V,X) and its complement is
(1 —e)(V2X). Obviously, (1 —e)(V,X) is also Galois-stable, hence py is semi-stable.

Let Z be the centralizer of End(X)®Qy in End(V;X), let Y be the centralizer of Z. The double
centralizer theorem gives that Y = End(X) ® Q. Choose an element a € End(V, X )Gal(ks/k) it
suffices to show that o € Y. Consider the graph of «

W £ {(x,az)|z € V; X}

this is a Galois-stable subspace of V, X x V; X, and then by 16.15 there exists an element u €

0
End(X x X)® Qg such that W = u(V;(X x X)). For any ¢ € Z, the matrix (S ) € End(V, X x

C

0
Vi X) commutes with End(X x X) ® Qy, and in particular, with . Then (g ) W C W. This

c
says that, for any x € V; X, (cx,cazx) € W. By the definition of the graph, o maps cx to cax, and

then a commutes with c. Hence, o € Y. |

Proposition 16.17 (finiteness theorem). Now all we need is that the condition Fin(X/k) holds
when £ is a finite field. Indeed, there is a stronger condition: there are only finitely many Abelian

varieties of the dimension g (up to isomorphism) over k.

Proof. By 16.11 and 16.12, it suffices to show that there are finitely many principal polarization
Abelian varieties over k. Note that they can be treated as the k-points of the stack Ay 4(k), this
is a stack of finite type over k, hence the k-points are finite. |

Theorem 16.18 (the p-divisible group version). Let X and Y be Abelian varieties over a field of

characteristic p. Then the map
® : Zp @ Homav (X, Y) — Homy,_qi (X [p™], Y [p™])
is an isomorphism.

Corollary 16.19. Let X and Y be Abelian varieties over a finite field k of characteristic p. Then

the following are equivalent:
(a) X ~Y;
(b1) for some £ # p we have V;X = V,Y as representations of Gal(k/k);
(b2) for all £ # p we have V,X = V,Y as representations of Gal(k/k);
(c1) X[p>] ~ Y[p™];
(c2) Mg(X) = Mg(Y) as F-isocrystals;
(
(
(

el) Z(X;t) = Z(Y5t);
e2) for all finite field extension k C k¥’ we have | X (k')| = |Y (K')].
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16.3 The theorem of Tate

Proof. The conditions (a) = (b2) = (bl) are clear.

Assume that (bl) holds true. Then there is a Galois-equivalent isomorphism h : V; X — V;Y

for some ¢ # p. Possibly after replacing h by ¢h for some n, we may assume that h(T,X) C T;Y,
so that

U = {h € Homga(k, /x)(Te X, T;Y)|h is injective}

is nonempty. It is f-adically open in Homgay(x, /k) (T¢ X, T¢Y). But Hom(X,Y) C Z, ® Hom(X,Y")
is f-adically dense, so by Tate theorem there is an element f € Hom(X,Y) such that T,f is
injective. This f is an isogeny.

Similarly (a) <= (cl) <= (c2). [
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