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A very useful link: https://ncatlab.org/nlab/show/Demazure%2C+lectures+on+p-div
isible+groups.

1 Schemes and formal schemes

1.1 k-functors

Definition 1.1.1. Let k be a ring and Mk be the category of k-rings (i.e., commutative associated
k-algebras with unit, or simply couples (R,ϕ) where R is a ring and ϕ : k → R a morphism).
Actually, for set-theoretically reasons, one should not take the category of all k-rings, but a smaller
one (see [DG70] page XXV-XXVI) but we shall not bother about this point.

A k-functor is by definition a covariant functor from Mk to the category Set. The category
of k-functors is denoted by MkE.

Example 1. The affine line Ok is defined by R 7→ R, R ∈Mk.

Remark 1.1.2. If ϕ : R → S is an arrow of Mk, if X ∈MkE, and if x ∈ X(R), we shall write
xS (or sometimes x) instead of X(ϕ)(x) ∈ X(S); if f : X → Y is an arrow of MkE, if R ∈Mk

and x ∈ X(R), we shall write f(x) instead of f(R)(x) ∈ Y (R); with these notations, the fact that
f is a morphism of functors amounts to f(x)S = f(xS).

Proposition 1.1.3. The category MkE has projective limits, for example:

(a) a final object e is defined by e(R) = ∅, R ∈Mk,

(b) if X,Y ∈MkE, the product X × Y is defined by (X × Y )(R) = X(R)× Y (R),

(c) if X f−→ Z
g←− Y is a diagram of MkE, the fibre product T = X ×Z Y is defined by

T (R) = X(R)×Z(R) Y (R) = {(x, y) ∈ X(R)× Y (R), f(x) = g(y)}

more generally, one has (lim←Xi)(R) = lim←Xi(R),

(d) f : X → Y is a monomorphism if and only if f(R) : X(R) → Y (R) is injective for each R.
We say that X is a subfunctor of Y if X(R) ⊆ Y (R) and f(R) is the inclusion, for all R.

Proposition 1.1.4. Let k′ ∈ Mk; as any k′-algebra can be viewed as a k-algebra, there is an
obvious functor Mk′ →Mk and therefore an obvious functor MkE→Mk′E; the latter is denoted
by X 7→ X ⊗k k

′. So, if R is a k′-ring and R[k] the underlying k-ring, one has

(X ⊗k k
′)(R) = X(R[k])

the functor X 7→ X⊗k′ is called the base-change functor or scalar-extension functor. It commutes
with projective limit, hence is left-exact. For instance, Ok ⊗k k

′ can be (and will be) identified
with Ok′ .
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1 SCHEMES AND FORMAL SCHEMES

1.2 Affine k-schemes

Definition 1.2.1. Let A ∈Mk, the k-functor SpkA (or simply SpA) is defined by

(SpkA)(R) = MorMk
(A,R)

(SpkA)(ϕ) = {ψ 7→ ϕ ◦ ψ} for ϕ : R→ S

if f : A→ B is an arrow of Mk, then Spkf : SpkB → SpkA is obviously defined. So A 7→ SpkA is
a contravariant functor from Mk to MkE.

An affine k-scheme is a k-functor isomorphic to a SpkA. For instance Ok is an affine k-scheme
because

(Spkk[T ])(R) = MorMk
(k[T ], R) ∼= R = Ok(R)

Remark 1.2.2. Let X be a k-functor, and A a k-ring. We have the very simple and very important
Yoneda bijection

MorMkE(SpkA,X)
∼−→ X(A)

to f : SpkA → X is associated ξ = f(idA)[= f(A)(idA)] ∈ X(A); conversely, if ξ ∈ X(A) and
ϕ ∈ Spk(A)(R) = MorMk

(A,R), we put f(ϕ) = X(ϕ)(ξ); with our notation, the correspondence
between f and ξ is simply f(ϕ) = ϕ(ξ).

As an example, we take X = SpkB; then X(A) = MorMk
(B,A), and we have a bijection

MorMkE(SpkA, SpkB) ∼= MorMk
(B,A)

it means that A 7→ SpkA is fully faithful, or equivalently that it induces an anti-equivalence between
the category of k-rings and the category of affine k-schemes.

This fundamental equivalence can also be looked at in the following way: Let X be any k-
functor; define a functor on X to be a morphism f : X → Ok, i.e., a functorial system of maps
X(R)→ R. The set of these functions, say O(X), has an obvious k-ring structure: if f, g ∈ O(X),
λ ∈ k, then

(f + g)(x) = f(x) + g(x)

(fg)(x) = f(x)g(x)

(λf)(x) = λf(x)

for any R ∈Mk and any x ∈ X(R). If x ∈ X(R) is fixed, then by the very definition of the k-ring
structure of O(X), f 7→ f(x) is an element MorMk

(O(X), R) = SpO(X); we therefore have a
canonical morphism

α : X → SpO(X)

It is easily seen that α is universal with respect to morphisms of X into affine k-schemes (any
such morphism can be uniquely factorized through α). The definition of affine k-schemes can be
rephrased as: X is an affine k-scheme if and only if α is an isomorphism. For instance O(Ok) is
the polynomial algebra k[T ] generated by the identity morphism T : Ok → Ok.

The functor A 7→ SpkA commutes with projective limits and base change: one has the following
obvious isomorphisms:

Sp(A)×Sp(C) Sp(B) ∼= Sp(A⊗C B)
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1.3 Closed and open subfunctors; schemes

lim
←

Sp(Ai) ∼= Sp(lim
→
Ai)

Spk(A)⊗k k
′ ∼= Spk(A⊗k k

′)

(the last one explaining the notation ⊗ for base change); as a consequence, the full subcategory of
affine schemes is stable under projective limits and base-change.

1.3 Closed and open subfunctors; schemes

Definition 1.3.1. Let X be a k-functor and E be a set of functions on X; E ⊆ O(X). We define
two subfunctors V (E) and D(E) of X:

V (E)(R) = {x ∈ X(R)|f(x) = 0, ∀f ∈ E}

D(E)(R) = {x ∈ X(R)|f(x) for f ∈ E, generate the unit ideal of R}

If U : Y → X is a morphism of k-functors and F = {f ◦u, f ∈ E} ⊆ O(Y ), then u−1(V (E)) =

V (F ), u−1(D(E)) = D(F ) [if u : Y → X is a morphism of k-functors and Z is a subfactor of X,
then u−1(Z) is defined as the subfactor of Y such that u−1(Z)(R) = {y ∈ Y (R)|u(y) ∈ Z(R)}].

Proposition 1.3.2. If X is an affine k-scheme, then

(1) V (E) is an affine k-scheme with O(V (E)) = O(X)/E(O(X)),

(2) if E = {f} has only one element, then D(E) is an affine k-scheme with O(D({f})) =

O(X)[f−1] = O(X)[T ]/(Tf − 1).

Proof. If X = SpA, and E ⊆ A = O(X), then for all R ∈Mk,

V (E)(R) = {ϕ ∈ MorMk
(A,R)|ϕ(E) = 0} ∼= MorMk

(A/EA,R)

D({f})(R) = {ϕ ∈ MorMk
(A,R)|ϕ(f) is invertible} ∼= MorMk

(A[f−1], R)

■

Definition 1.3.3. The subfunctor Y of X is said to be closed (resp. open) if for any morphism
u : T → X where T is an affine scheme, the subfunctor u−1(Y ) of T is of the form V (E) (resp.
D(E)).

For instance, if X is affine, then Y is closed (resp. open) if and only if it is a V (E) (resp.
D(E)). As a corollary, a closed subfunctor of an affine k-scheme is also an affine k-scheme; this
need not be true for open subfunctors: take X = Spk[T, T ′] ∼= O2

k and Y = D({T, T ′}).

Definition 1.3.4. In the functorial setting, the precise definition of a not-necessarily affine k-
scheme k-scheme is a bit complicated. Let us give it for the sake of completeness:

The k-functor X is a scheme if:

(1) [X is a sheaf for the Zariski Grothendieck topology on Mop
k ] it is a “local” k-functor: for any

k-ring R and any “partition of unity” fi of R (= family of elements of R such that
∑
Rfi = R),

given elements xi ∈ X(R[f−1i ]) such that the images of xi and xj in X(R[f−1i f−1j ]) coincide
for all couples (i, j), then there exists one and only one x ∈ X(R) which maps on to the xi.
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1 SCHEMES AND FORMAL SCHEMES

(2) [X has a cover of Zariski open immersions of affine k-schemes] There exists a family (Uj) of
open subfunctors with the following properties: each Uj is an affine k-functor; for any field
K ∈Mk, X(K) is the union of the Uj(K).

Proposition 1.3.5. (1) An open or closed subfunctor of a k-functor is a k-scheme,

(2) any finite projective limit (e.g. fibre product) of k-schemes is a k-scheme,

(3) if X is a k-scheme, then X ⊗k k
′ is a k′-scheme.

Remark 1.3.6. As an illustration of (1), let A ∈Mk and E ⊆ A(∼= O(SpA)); then D(E) ⊆ SpA

is a k-scheme, because it is local and covered by the affine k-schemes D({f}), f ∈ E.

Also note that the limit of a directed projective system of schemes is not generally a scheme.

1.4 The geometric point of view

Definition 1.4.1. Let X be a k-functor; we want to define a geometric space (topological space
with a sheaf of local rings) |X| associated to X.

First, the underlying set of X is defined as follows: a point of |X| is an equivalence class of
elements of all X(K) where K runs through the fields of Mk, x ∈ X(K) and x′ ∈ X(K ′) being
equivalent if there exist two morphisms of Mk, say K → L, K ′ → L, where L is a field with
xL = x′L.

Second, the topology. If Y is a subfunctor of X, then |Y | can be identified with a subset of
|X|; we define a subset U of |X| to be open if there exists an open subfunctor Y of X, such that
|Y | = U ; moreover, such a Y can be proved to be unique, and we write Y = XU .

Third, the sheaf is the associated sheaf to the presheaf of rings U → O(XU ).

Example 2. As an example, take X = SpA, A ∈Mk. Then |SpA| is the usual spectrum SpecA

of A; the points of SpecA are the prime ideals of A; the open sets are the |D(S)| = {p|S 6⊆ p},
S ⊆ A, the sheaf is associated to the presheaf |D(S)| → A[S−1]. (One basic theorem asserts that
the ring of sections of the sheaf over |D({f})| is A[f−1]).

In the general case, for all A ∈ Mk, and all ξ ∈ X(A), the Yoneda morphism SpA → X

associated to ξ defines a ringed-space morphism SpecA → |X| and |X| can be proved to be the
inductive limit of the (non-directed) system of the SpecA. ([DG70] I, section 1, no4)

Theorem 1.4.2. One has the following comparison theorem ([DG70] I, section 1, 4.4):

X 7→ |X| induces an equivalence between the category of k-schemes and the category of
geometric spaces locally isomorphic to a SpecA, A ∈Mk.

Remark 1.4.3. One can give a quasi-inverse functor: there is a functorial bijection between X(R)

and the set of geometric-space-morphisms from SpecR to |X|, as follows from the theorem and
Yoneda’s isomorphism.

By this equivalence, one defines geometric objects associated to the k-scheme X: the local ring
OX,x and the residue field κ(x), x ∈ |X|; all are k-rings.
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1.5 Finiteness conditions

1.5 Finiteness conditions

Definition 1.5.1. Let k be a field. A k-scheme X is said to be finite if it is affine and if O(X)

is a finite dimensional vector space; if X is finite, then [O(X) : k] is called the rank rk(X) of
X. A k-scheme X is locally algebraic (algebraic) if it has a covering (a finite covering) by open
subfunctors Xi which are affine k-schemes such that each O(Xi) is a finitely generated k-algebra.

Proposition 1.5.2. If X is an affine k-scheme, then the following conditions are equivalent:

(1) X is algebraic,

(2) X is locally algebraic,

(3) O(X) is a finitely generated k-algebra.

([DG70] I,section 3, 1.7)

Proposition 1.5.3. (1) It follows from the Normalization lemma that X is finite if and only if
X is algebraic and |X| is finite.

(2) It follows from the Nullstellensatz that if X is locally algebraic and 6= ∅ (one defines ∅(R) = ∅
for all R, or equivalently |∅| = ∅), then X(K) 6= ∅ for some finite extension K of k.

(3) Let X be a (locally) algebraic k-scheme, k algebraically closed; then if U is an open subfunctor
of X, U(k) = ∅ implies U = ∅. This easily implies that if one views X(k) as the subspace of
|X| whose points are the x ∈ |X| such that κ(x) = k, the open subsets of |X| and the open
subsets of X(k) are in a bijection correspondence (by |U | 7→ U(k)).

It is therefore equivalent to know the k-scheme X, or the k-geometric space X(k) - the only
difference between the X(k)’s and Serre’s algebraic spaces lies in that the latter have no
nilpotent elements in their local rings, whereas the former may have. As we shall see late,
this is an important difference. Serre’s algebraic spaces correspond to “reduced” algebraic k-
schemes (i.e., with no nilpotent elements). A similar disscussion can be made in the case of a
general field k; one has to replace X(k) by the set of closed points of |X| (by the Nullstellensatz,
x ∈ |X| is closed if and only if κ(x) is a finite extension of k).

1.6 The four definitions of formal schemes

From now on, k is assumed to be a field.

Definition 1.6.1. We denote by Mfk the full subcategory of Mk consisting of finite (= finite
dimensional) k-rings. A k-formal functor is a covariant functor F : Mfk → Set; the category of
k-formal functors is denoted by MfkE; this category has finite projective limits. The inclusion
functor Mfk → Mk gives a canonical functor MkE → MfkE called the completion functor: if
X ∈MkE, then X̂ ∈MfkE is defined by X̂(R) = X(R) for R ∈Mfk. The completion-functor is
obviously left-exact.

If A ∈ Mfk, we denote by SpfkA or Spf the k-formal functor R 7→ MorMfk(A,R); one has
obviously ySpA = SpfA, and for any F ∈MfkE a Yoneda isomorphism

MorMfkE(SpfA,F )
∼−→ F (A), A ∈Mfk

7 2023.9



1 SCHEMES AND FORMAL SCHEMES

In particular, the functor A 7→ SpfA is fully-faithful, or, what amounts to the same, the functor
X 7→ X̂, X a finite k-scheme, is fully faithful. We therefore can view the category of finite k-
schemes as a full subcategory of either MkE or MfkE (we shall say: “the completion does not
change the finite k-schemes”).

Definition 1.6.2 (The first definition). By definition, a k-formal-scheme is a k-formal functor
which is the limit of a directed inductive system of finite k-schemes: F is a k-formal-scheme if
there exists a directed projective system (Ai) of finite k-rings and functorial (in R) isomorphisms:

F (R) ∼= limMorMfk(Ai, R) = lim
→

Spf(Ai)(R)

For any k-formal functor G, one has a Yoneda isomorphism

MorMfkE(lim→
Spf(Ai), G) = lim

←
G(Ai)

Definition 1.6.3 (The second definition). Let A be a profinite k-ring, i.e., a topological k-ring
whose topology has a basis of neighborhoods of zero consisting of ideals of finite codimension;
one also can say that A is the inverse limit (as a topological ring) of discrete quotients which are
finite k-rings. If R ∈MfkE, we define Spf(A)(R) as the set of all continuous homomorphisms of
the topological k-ring A to the discrete k-ring R; if (Ai) is the family of discrete finite quotients
of A defining its topology, then obviously Spf(A)(R) = lim→ Spf(Ai)(R), and SpfA is a k-formal
scheme.

Theorem 1.6.4. If ϕ : A → B is a morphism of profinite k-rings, then Spfϕ : SpfB → SpfA is
obviously defined, then we have A 7→ SpfA is an anti-equivalence of the category PMk of profinite
k-rings with the category of k-formal-schemes.

Proof. We first prove that Spf is fully faithful: let A and B be two profinite k-rings and (Ai) be
the family of all finite discrete quotients of A. We have isomorphisms

MorMfkE(SpfA, SpfB) ∼= lim
←

(SpfB)(Ai) ∼= lim
←

MorPMk
(B,Ai) ∼= MorPMk

(B,A)

We now prove that any k-formal-scheme F is isomorphic to a SpfA. By definition there is a directed
projective system (Ai) of Mfk such that F is isomorphic to lim→ SpfAi; let A be the topological
k-ring lim←Ai; we shall prove that A is a profinite k-ring and that lim→ SpfAi

∼= SpfA.

Let us fix an i; the images of the transition maps fij : Aj → Ai, j ≥ i, form a directed
decreasing set of sub-k-rings in the finite k-ring Ai (then the set of fj(Aj) only has chains with
finite length); it follows that there is a j(i) ≥ i such that

fij(i)(A)(Aj(i)) =
∩
j≥i

Aij

it implies that, if we replace each Ai by A′i =
∩

j≥iAij , we change neither the topological k-ring
A, nor the functor lim→ SpfAi. We can hence suppose that all transition maps Aj → Ai are
surjective. It is now sufficient to prove that the projections A → Ai are surjective; this would
imply both our assertions.

Let now Ci be the k-vector space dual to Ai; the Ci form a directed inductive system with
injective transition maps; call C = lim→Ci; each canonical map Ci → C is injective. Let C∗ be
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1.6 The four definitions of formal schemes

the dual space of C. The dual maps C∗ → Ai are surjective and form a projective system; they
factorize through A and the projections A → Ai are a fortiori surjective. In fact, the canonical
map C∗ → A is bijective; if v ∈ C∗ maps to 0 on each Ai; then the linear form v over C vanishes
on each Ci, hence is zero; conversely, if a ∈ A, then the projection of a on each Ai is a k-linear
form on Ci; these linear forms match together, and define a k-linear form on C, which means that
a belongs to the image of C∗. ■

Definition 1.6.5 (The third definition). A k-cogebra is a k-vector space C together with a k-
linear map ∆ : C → C ⊗k C. We say that C is a k-coring if ∆ is coassociative, cocommutative,
and has a counit ε; let us make these three notions precise.

(1) ∆ is coassociative if (∆⊗ idC) ◦∆ = (idC ⊗∆) ◦∆, in the following diagram

C C ⊗ C C ⊗ C ⊗ C
idC⊗∆

∆⊗idC

(2) ∆ is cocommutative if the image of ∆ consists of symmetric tensors; equivalently, if σ ◦∆ = ∆

where σ(x⊗ y) = y ⊗ x.

(3) A counit ε to ∆ is a k-linear form ε : C → k such that the two maps

C
∆−→ C ⊗ C idC⊗ϵ−−−−→ C ⊗ k ∼−→ C

C
∆−→ C ⊗ C ϵ⊗idC−−−−→ k ⊗ C ∼←− C

are idC .

If C is a k-cogebra, then the dual k-vector space C∗ has an algebra structure defined by
〈x · y, u〉 = 〈x⊗ y,∆u〉, x, y ∈ C∗, u ∈ C. If C is a k-coring, then C∗ is a ring.

Conversely, if A is a finite k-algebra, the dual space A∗ has a natural cogebra structure, which
is a coring structure if A is a ring.

The morphisms of k-corings are defined in an obvious way, and the k-corings form a category.

Lemma 1.6.6. Let A and R be two finite k-rings, and A∗ the dual k-coring of A. Linear maps
A → R correspond bijectively to elements of the tensor product A∗ ⊗ R; the k-linear maps ∆A∗

and εA∗ extend to R-linear maps A∗ ⊗R→ (A∗ ⊗R)⊗ (A∗ ⊗R) and A∗ ⊗R→ R which also we
denote by ∆ and ε. We then have the k-linear map A → R associated to u ∈ A∗ ⊗ R is a ring
homomorphism if and only if ∆u− u⊗ u and εu = 1.

We therefore have a functorial isomorphism

SpA(R) = {u ∈ A∗ ⊗R|∆u = u⊗ u, εu = 1}

Definition 1.6.7. For any k-coring C, we define the k-formal functor Sp∗C by Sp∗C(R) = {u ∈
C ⊗R|∆u = u⊗ u, εu = 1}. We thus have a covariant functor Sp∗ from the category of k-corings
to he category of k-formal functors.

Theorem 1.6.8. The functor Sp∗ is an equivalence between the category of k-corings and the
category of k-formal-schemes.
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1 SCHEMES AND FORMAL SCHEMES

Proof. As we have already seen Sp∗ induces an equivalence between the category of finite k-corings
and the category of finite k-schemes by the formula.

SpfA = Sp∗A∗

We have already seen that any k-formal-scheme F is an inductive limit of finite schemes Spf(Ai)

with surjective transition maps Aj → Ai; the inductive limit C = lim→Ai∗ is naturally endowed
with a k-coring structure, and, for any R ∈Mfk, we have

Sp∗C(R) ∼= lim
→

Sp∗A∗i (R)
∼= lim
→

SpfAi(R) = F (R)

The only point that remains to be checked is that any k-coring is a union of finite dimensional
ones:

Lemma. If C is a k-coring, and E a finite dimensional subvector space of C, there exists a
finite-dimensional subvector space F of C with E ⊆ F and ∆F ⊆ F ⊗ F .

We need only prove the lemma for [E : k] = 1, say E = kx. Let ai be a k-basis of C and write
∆x =

∑
xi ⊗ ai; put F =

∑
kxi; one has x = (1⊗ ε)∆(x) =

∑
xiε(ai) ∈ F , and∑

∆xi ⊗ ai = (∆⊗ 1)∆x = (1⊗∆)∆x =
∑

xi ⊗∆ai

if ∆ai =
∑
bij ⊗ aj , this gives ∆xi =

∑
xi ⊗ bji ∈ F ⊗ C, hence ∆F ⊆ F ⊗ C. Since ∆ is

cocommutative, we have ∆F ⊆ C ⊗ F , hence ∆F ⊆ F ⊗ F . ■

Remark 1.6.9. If C is a k-coring, let C∗ be the k-dual space of C with the linear topology defined
by the subspaces of C which are orthogonal to the finite-dimensional subcorings of C. Then, what
we have proved already in the previous gives: the k-ring C∗ is profinite and

Sp∗C = SpfC∗

Conversely, we can recover C as the set of continuous linear forms on C∗: if A is a profinite
k-ring, write A′, for the set of continuous linear forms on A, then

SpfA = Sp∗A′

Theorem 1.6.10 (The fourth definition). The fourth definition of k-formal scheme is from a
purely functorial point of view:

The k-formal functor Mfk → E is a k-formal scheme if and only if it is a left exact functor.

Recall that a left exact functor is one which commutes with finite projective limits (i.e., which
commutes with fibre products and with the final objects). Any Spf(A), A ∈ Mfk is clearly left
exact (this is true in any category, and is the very definition of finite projective limits) hence also
any inductive limit of Spf(Ai), Ai ∈Mfk, i.e., any k-formal-scheme, is left exact.

A proof of the converse can be found in [DG70] V, section 2, 3.1. This fourth definition will
not be used in the sequal.
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1.7 Operations on formal schemes

1.7 Operations on formal schemes

Proposition 1.7.1. A finite projective limit of k-formal-schemes is a k-formal-scheme.

For instance let F1 → F ← F2 be a diagram of k-formal-schemes corresponding to a diagram
A1 ← A → A2 of profinite k-rings; then F1 ×F F2 is a k-formal scheme corresponding to the
profinite k-ring A1 x⊗AA2, where

A1 x⊗AA2 = lim
←
A1/I1 ⊗A A2/I2

where I1 (resp. I2) runs through the open ideals of A1 (resp. A2); A1 x⊗AA2 can also be defined as
the completed ring of the usual tensor product A1 ⊗A A2 for the topology given by the A1 ⊗ I2 +
I1 ⊗A2.

The description from the coring point of view is a bit more difficult. Let C1
φ1−→ C

φ2←− C2 be
the corresponding coring diagram. Then the k-coring D defining the fibre product is the kernel
of the map from C1 ⊗ C2 to C which sends x1 ⊗ x2 to ϕ1(x1)ε2(x2)− ε1(x1)ϕ2(x2); the canonical
maps D → C1 and D → C2 are defined by x1 ⊗ x2 7→ x1ε2(x2) and x1 ⊗ x2 7→ ε1(x1)x2.

More particularly F1×F2 corresponds to the profinite k-ring A1 p⊗A2 and to the coring A∗1⊗A∗2:

SpfA1 × SpfA2 = Spf(A1⊗̂A2)

Sp∗C1 × Sp∗C2 = Sp∗(C1) = Sp∗(C1 ⊗ C2)

(note that the maps C1 ⊗ C2 → Ci, i = 1, 2, are defined by the counits).

Lemma 1.7.2. Let f = SpfΨ = Sp∗ϕ be a morphism of k-formal schemes. Then

f is a monomorphism ⇐⇒ Ψ is surjective ⇐⇒ ϕ is injective

Proof. Clearly,
ϕ is injective⇒ Ψ is surjective⇒ f is a monomorphism

Conversely, if f : X → Y is a monomorphism, then (general nonsense) the diagonal morphism
X → X ×Y X is an isomorphism. If ϕ : C → D is the corresponding coring morphism, then the
following sequence

0→ C
u−→ C ⊗ C v−→ D

is exact, where u(x) = x ⊗ x, v(x ⊗ y) = εC(x)ϕ(y) − εC(y)ϕ(x). If α ∈ Ker(ϕ), then εC(α) =

εD(ϕ(α)) = 0; it follows that for any x ∈ C, one has v(x ⊗ α) = 0; hence C ⊗ (Kerϕ) ⊆ u(C).
This implies Ker(ϕ) = 0, or [C : k] = 1, ϕ = 0; in the latter case, one has εC = ϕ ◦ εD = 0, and
this implies that C = 0 (for instance because id∗C = 0 implies C∗ = 0). ■

Proposition 1.7.3. The category of k-formal-schemes has infinite direct sums:⨿
SpfAi = Spf

∏
Ai⨿

Sp∗Ci = Sp∗
∑

Ci

Definition 1.7.4. A formal scheme F is said to be local if it is isomorphic to a SpfA where A is
a local ring; equivalently, Card(F (K)) must be 1 for all fields K ∈Mfk.
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Proposition 1.7.5. Any formal scheme is a direct sum of local formal-schemes: if A = lim←A/Ii

is a profinite k-ring, let Ω be the set of all open maximal ideals of A; the Artinian k-ring A/Ii

is a product of local rings, which are the localized rings (A/Ii)m/Ii , where m runs through the
elements of Ω containing Ii; since (A/Ii)m = (A/Ii)m/Ii , if m ⊇ Ii and {0} otherwise, we have
A/Ii =

∏
m∈Ω(A/Ii)m; defining Am as the limit of the (A/Ii)m, we get

A =
∏
m∈Ω

Am

(each Am being local, as a directed projective limit of local rings).

Definition 1.7.6. Let k′ be an extension of k; we define the base change functor by the following
formulas

(SpfA)⊗k k
′ = Spf(A⊗k k

′)

(Sp∗C)⊗k k
′ = Sp∗(C ⊗k k

′)

If k′/k is finite, then this base-change functor is the obvious one, defined by (F ⊗k k
′)(R) =

F (R[k]).

Remark 1.7.7. If X is a k-scheme, then its completion X̂ is a k-formal scheme: more precisely,
X̂ is the direct sum of the SpfÔX,x where x runs through the points of x such that [κ(x) : k] <∞,
and where SpfÔX,x is the completion of ÔX,x defined by the ideals of finite codimension. If X is
a (locally) algebraic k-scheme, then these x are precisely the closed points of X, and Ôx,x is the
completion of OX,x for the usual adic topology. For instance, if X = SpA, where A is a finitely
generated k-ring, then X̂ =

⨿
SpfÂm, where m runs through all maximal ideals of A, and xAm is

the completion of the local ring Am for the m-adic topology. The functor X 7→ X̂ is left exact and
commutes with base-change.

1.8 Constant and etale schemes

For the moment, let us drop the assumption that k is a field.

Definition 1.8.1. Given a set E, we define the constant scheme Ek to be the direct sum (in the
category of k-schemes)

Ek = (Spkk)
(E)

equivalently, |Ek| is the direct sum (Speck)(E).

For any scheme X, we have canonical bijections

MorMkE(Ek, X) ∼= MorMkE(Spkk,X)(E) ∼= X(k)(E) = MorSet(E,X(k))

so that E 7→ Ek is the right adjoint functor to X 7→ X(k). This implies that E 7→ Ek commutes
with finite projective limits.

If k′ ∈Mk, one has a canonical isomorphism

E′k
∼= Ek ⊗k k

′

Remark 1.8.2. If X is a scheme, then MorMkE(X,Ek) can be identified with the set of continuous
(i.e., locally constant) maps of |X| to the discrete space E.
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1.9 The Frobenius morphism

Proposition 1.8.3. If E is finite, then Ek is affine and Ok(Ek) is the k-ring kE .

Definition 1.8.4. Let now k be again a field. We define the constant formal-scheme Êk as the
completion of Ek, or equivalently, as the direct sum (Spf)(E). Then Êk

∼= SpfkE , where kE has
the product topology.

A k-scheme (resp. k-formal-scheme) is called constant if it is isomorphic to an Ek (resp. Êk).
The completion functor induces an equivalence between the category of canstant k-schemes and
the category of constant k-formal schemes.

We define now an etale k-scheme (resp. an etale k-formal-scheme) to be a direct sum of Sp

(resp. Spf) of finite separable extensions of k.

Proposition 1.8.5. Let k̄ be an algebraic closure of k, and ks the subextension consisting of
all separable elements of k̄. Then for a k-scheme X (resp. a k-formal scheme X), the following
conditions are equivalent:

X is etale, X ⊗k k̄ is constant, X ⊗k ks is constant

This proposition is an easy consequence of the following: if A is a k-ring, then A is a finite
product of finite separable extensions of k if and only if A⊗k k̄ is a finite power of k̄, or A⊗k ks

a finite power of ks.

Proposition 1.8.6. Let Π be the Galois group of ks/k; it is a profinite topological group. Let X
be an etale k-scheme; then Π operates on the set X(ks) and the isotropy group of any x ∈ X(ks)

is open in Π (one calls X(ks) a Π-set). The fundamental theorem of Galois theory is equivalent to:
X 7→ X(ks) is an equivalence between the category of etale k-schemes and the category of Π-sets.

Note also that X 7→ X̂ is an equivalence between the categories of etale k-schemes and etale
k-formal schemes.

1.9 The Frobenius morphism

Remark 1.9.1. We suppose now that the characteristic p of the field k is > 0.

Definition 1.9.2. For any k-ring A, we denote fA : A → A the map x 7→ xp; we denote by
A[f ] the k-ring deduced from by the scalar restriction fk : k → k, and A(p) : A ⊗k,fk k the k-ring
obtained by the scalar extension fk.

Then fA : A→ A[f ] is a k-ring morphism, and defines a k-ring morphism

FA : A(p) → A, x⊗ λ = xpλ

If X is a k-functor, we put X(p) = X ⊗k,f k, so that

X(p)(R) = X(R[f ])

and we define the Frobenius morphism FX : X → X(p) by

FX(R) = X(fR) : X(R)→ X(p)(R) = X(R[f ])
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1 SCHEMES AND FORMAL SCHEMES

For example, if X = SpkA, then X(p) = SpkA
(p) and FX = SpkFA. More generally, if X is a

k-scheme, X(p) is a k-scheme. If k = Fp, then X(p) = X, but FX 6= idX in general. If k′ is
an extension of k, then (X ⊗k k

′)(p) = X(p) ⊗k k
′ and FX⊗kk′ = FX ⊗k k

′ (obviously from the
definition).

Analogous definitions can be given for formal-functors and formal-schemes and the completion
functor commutes with these constructions.

Proposition 1.9.3. Let X be a k-formal scheme, or a locally algebraic k-scheme; then X is etale
if and only if FX is a monomorphism, or if and only if FX is an isomorphism.

Proof. Let us give the proof in the case of a locally algebraic k-scheme. We can replace X by
X ⊗k k̄, hence suppose that k = k̄. If X is constant, then FX is an isomorphism. Conversely,
suppose that Fx is a monomorphism; let U = SpA be an algebraic open affine subscheme of X;
then FU is a monomorphism and we have to prove that A is a finite power of k. Let m be a
maximal ideal of A; write A/m2 = A/m ⊕ m/m2 and look at the following maps: the first one is
the canonical map u : A → A/m2, the second one is v : A → A/m → A/m ⊕ m/m2. Trivially
u ◦ FA = v ◦ FA; but by hypothesis FA is an epimorphism of Mk, and this implies u = v, i.e.,
m/m2 = 0. For any maximal ideal m of A, we therefore have m = m2, and this in turn implies in
a well-known manner that A ∼−→ kn. ■

1.10 Frobenius map and symmetric products

Definition 1.10.1. Suppose again p 6= 0. Let V be a k-vector space, ⊗pV the p-fold tensor
product of V , TSpV the subspace of symmetric tensors and s : ⊗pV → TSpV the symmetrization
operator:

s(a1 ⊗ · · · ⊗ ap) =
∑

aσ(1) ⊗ · · · ⊗ aσ(p)

where σ runs through the symmetric group Sp. Let αV : V (p) → TSpV be the linear map sending
a⊗ λ to λ(a⊗ · · · ⊗ a).

Lemma 1.10.2. The composite map V (α) αV−−→ TSpV → TSpV/s(⊗pV ) is bijective.

Definition 1.10.3. Define the canonical map λV : TSpV → V (p) by λV ◦ s = 0, λV ◦ αV = id.

Remark 1.10.4. If A is a k-ring, then TSpA is a ring and λA a k-ring homomorphism (because
s(⊗pA) is an ideal in TSpA by the formula s(uv) = us(v) for u symmetric). If X = SpA, we
denote Sp(TSpA) by SpX (p-fold symmetric power of X). One has then the following commutative
diagram:

Xp SpX

X X(p)

can

SpλA

FX

which gives another definition for FX .

Theorem 1.10.5. Let now C be a k-coring, and consider the Frobenius morphism F : Sp∗C →
Sp∗C(p) (it is clear that (Sp∗C)(p), where C(p) = C ⊗k,f k). There exists a unique coring map
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VC : C → C(p) such that F = Sp∗VC . The pth iterate ∆p : C → ⊗pC of ∆ : C → ⊗2C (defined
inductively by ∆2 = ∆, ∆3 = (1⊗∆) ◦∆ = (∆⊗ 1) ◦∆, · · · ) maps C in TSpC, and we have the
theorem VC : C → c(p) is the composite map C

∆p−−→ TSpC
λC−−→ C(p).

Proof. Let A be the (profinite) k-ring C∗; then A(p) ∼= (c(p))∗ = (C∗)(p). If a ∈ A, x ∈ C, one
has by definition 〈a⊗ 1, V (x)〉 = 〈ap, x〉 where a ⊗ 1 ∈ (C∗)(p) = C∗ ⊗k,f k and V (x) ∈ C(p).
By definition of the multiplication of A, one also has 〈ap, x〉 = 〈a⊗ · · · ⊗ a,∆px〉 in the duality
between ⊗pA and ⊗pC. But a⊗ · · · ⊗ a is symmetric, and ∆p(x) = αC(y)+ s(v) for y = λC∆p(x)

and a suitable v ∈ ⊗pC. Since 〈a⊗ · · · ⊗ a, s(v)〉 = 0, this gives

〈a⊗ 1, V (x)〉 = 〈a⊗ · · · ⊗ a, αC(x)〉 = 〈a⊗ 1, y〉

and V (x) = y = λC∆p(x), as claimed above. ■

Corollary 1.10.6. X = Sp∗C = SpfA is etale if and only if FA is surjective (resp. bijective) and
if and only if VC is injective (resp. bijective).

2 Group-schemes and Formal Group-schemes

2.1 Group-functors

Definition 2.1.1. Let k be a ring. A group law on a functor G ∈Mk is a family of group-laws
on all the G(R), R ∈ Mk, such that each functoriality map G(R) → G(S) is a homomorphism.
Equivalently, a group law on G is a morphism

π : G×G→ G

such that
π(R) : G(R)×G(R)→ G(R)

is a group law for all R; this condition is equivalent to the axioms:

• (Ass) The two morphisms π ◦ (π × idG) and π ◦ (idG × π) from G×G×G to G are equal.

• (Un) There exists an element 1 ∈ G(k) (or equivalently a morphism eLSpk → G) such that
π ◦ (idG × e) and π ◦ (e× idG) are equal to idG.

• (Inv) There exists a morphism σ : G→ G such that the two morphisms G (idG,σ)−−−−→ G×G π−→ G

and G
(σ,idG)−−−−→ G×G π−→ G are equal to idG.

We are principally interested in commutative group laws, i.e., such that G(R) is commutative for
all R, i.e.

• (Com) If τ : G×G→ G×G is the symmetry, then τ ◦ π = π.

A k-group functor is a pair (G, π), where G is a k-functor and π a group-law on G. The k-group
functors form a category, a homomorphism f : G→ H being a morphism such that f(R) : G(R)→
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H(R) is a group-homomorphism for each R, or equivalently such that (f ×f)◦∆G = ∆H ◦f . The
category Grk of k-group-functors has projective limits. For instance:

- The final object ek = Spk has a unique group law.

- If G → H ← K is a diagram of Grk, the fibre product G ×H K has an obvious group law,
for which it is the fibre product in Grk.

- In particular, if f : G→ H is a homomorphism, then the kernel Ker(f) of f is the sub-functor
G×H ek of G; equivalently

Ker(f)(R) = Ker(f(R) : G(R)→ H(R))

The homomorphism f is a monomorphism if and only if Ker(f) = ek.

- The definition of a subgroup functor is clear.

A k-group-scheme or k-group is a k-group functor whose underlying k-functor is a scheme.

The base change functor Grk → Grk′ , for k′ ∈Mk is obviously defined.

2.2 Constant and etale k-groups

Definition 2.2.1. The functor E 7→ Ek from sets to k-schemes commutes with products and final
objects; it follows that Ek has a natural group-law if E is a group. Such a k-group is called a
constant k-group.

Proposition 2.2.2. Suppose k is a field and Π the Galois group of ks/k; the functor X 7→ X(ks)

from etale k-schemes to Π-sets is an equivalence; it follows then from the definition of a k-groups,
and the fact that a product of etale schemes is also etale: The functor X 7→ X(ks) is an equivalence
between the category of etale k-groups (resp. commutative etale k-groups) and the category of
Π-groups (resp. commutative Π-groups = Galois modules over Π).

Moreover, X is an etale k-group if and only if X ⊗k ks is a constant k-group.

2.3 Affine k-groups

Definition 2.3.1. Let G = SpkA be an affine k-scheme. The morphism π : G × G → G are the
Spk∆ where ∆ : A→ A⊗kA is a k-ring morphism. Moreover π satisfies Ass, Com, Un if and only
if coassocaitive, cocommutative, has a counit. The condition (Inv) is equivalent to (Coinv): there
exists σ : A→ A such that the composite maps

A
∆−→ A⊗A idA⊗σ−−−−→ A⊗A product−−−−−→ A

A
∆−→ A⊗A σ⊗idA−−−−→ A⊗A product−−−−−→ A

are the composite map A
ϵ−→ k → A. Such a σ is called an involution, or antipodism. If one

identifies A with O(G), A⊗A with O(G×G), then

(∆f)(x, y) = f(xy), σf(x) = f(x−1), εf = f(1)

for x, y ∈ G(R), R ∈Mk.
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2.3 Affine k-groups

We shall be interested in commutative groups. Let us define a k-biring A as a k-module,
together with a structure of k-ring and a tructure of k-coring, which are compatible in either of
the two equivalent following senses:

- the product A⊗A→ A is a k-coring morphism.

- the coproduct A→ A⊗A is a k-ring morphism.

Then, the category of commutative affine k-groups is antiequivalent to the category of k-birings
with antipodism by G 7→ O(G) and A 7→ SpA (the morphisms of birings are defined in the obvious
way).

A very useful remark is the following: let G be an affine k-group and A = O(G) [then
Mk(A,R) ∼= G(R) for any R ∈Mk],

(1) in the group G(A⊗A) = Mk(A,A⊗A), ∆A is the product of the canonical maps i1 : a 7→ 1⊗a
and i2 : a 7→ a⊗ 1,

(2) in the group G(A) = Mk(A,A), σA is the inverse of idA,

(3) εA is the identity of G(k) = Mk(A, k).

These facts are trivial: for instance (1) says that if H is a group, the map (x, y) 7→ xy is the
product (x, y) 7→ x and (x, y) 7→ y.

Example 3. The additive group αk is defined as follows: αk(R) is the additive group of R; then,
by the above remarks:

O(αk) = k[T ]

(T is the identity αk → Ok), ∆T = T ⊗ 1 + 1⊗ T , σT = −T , εT = 0.

Example 4. The multiplicative group µk is defined as follows: µk(R) is the multiplicative group
of invertible elements of R; hence

O(µk) = k[T, T−1]

(T : µk → Ok is the inclusion), ∆T = T ⊗ T , σT = T−1, εT = 1.

Example 5. Let n ≥ 1 be an integer. We define a group homomorphism µk
n−→ µk by x 7→ xn.

The kernel of this homomorphism is denoted by nµk. Hence

nµk(R) = {x ∈ R, xn = 1}

O(nµk) = k[T ]/(Tn − 1)

with the same formulas as above. Note that if k is a field and n is not 0 in k, nµk is etale (because
Tn − 1 is a separable polynomial) and nµk(ks) is the Galois module of nth roots of unity.

Example 6. Let k be a field with characteristic p 6= 0. One defines prαk as the kernel of the
homomorphism x 7→ xp

r of αk in itself. Hence

prαk(R) = {x ∈ R, xp
r
= 0}

O(prαk) = k[T ]/T pr

Note that prαk(K) = {0} for any field K.
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Remark 2.3.2. Remark that αk ⊗k k
′ = αk′, µk ⊗k k

′ = µk′,· · ·

Lemma 2.3.3. The remarks we made about the construction of ∆, ε can be generalized in the
following way. Let H be any k-group functor, and G = SpkA be an affine k-group. Let f ∈
MorMkE(G,H) ∼= H(A); consider the three maps i1, i2,∆ : A→ A⊗A. Then:

The element f ∈ H(A) is a group homomorphism from G to H if and only if in the group
H(A⊗A), one has ∆(f) = i1(f)i2(f). Because, if H(A⊗A) is identified with MorMkE(G×G,H),
then ∆(f), i1(f) and i2(f) map (x, y) to f(xy), f(x), f(y) respectively.

Example 7.
MorGrk(G,αk) = {x ∈ A,∆x = x⊗ 1 + 1⊗ x}

MorGrk(G,pr αk) = {x ∈ A, xp
r
= 0,∆x = x⊗ 1 + 1⊗ x}

MorGrk(G,µk){x ∈ A,∆x = x⊗ x, εx = 1}

Remark 2.3.4. As for the latter, remark that the lemma gives: x ∈ A = MorMkE(E,Ok) is a
homomorphism from G to µk if and only if ∆x = x ⊗ x, and x is invertible. But this implies
εx = 1 (because a group homomorphism sends 1 to 1); conversely, if ∆x = x⊗ x and εx = 1, then
by (Coinv) xσ(x) = εx = 1

MorGrk(G) = {x ∈ A, x
n = 1, ∆x = x⊗ x, εx = 1}

2.4 k-formal-groups, Catier duality

Definition 2.4.1. Suppose now that k is a field. A k-formal group is a k-formal-group-functor
whose underlying k-formal-scheme. For k-formal-groups, we can replace tensor products, by com-
pleted tensor products: the coproduct maps A to A⊗̂A, · · · If G is a k-group, then Ĝ has a natural
structure of a k-formal group. For instance, G 7→ Ĝ is an equivalence between constant (resp.
etale, resp. finite) k-groups and constant (resp. etale, resp. finite) k-formal groups.

Remark 2.4.2. It is more interesting to look at formal-groups from the point of view of k-corings.
Let G = Sp∗C be a k-formal-scheme; to give a morphism π : G × G → G is equivalent to give a
k-coring map C ⊗ C → C, i.e., an algebra structure on C compatible with the coring structure;
moreover, π is a group law (resp. a commutative group law) if and only if this algebra structure
is associative, has a unit element and an antipodism (same axiom as (Coinv)) (resp. and is
commutative). In particular, is an equivalence between k-birings mith antipodism and commutative
k-formal-groups. It follows that SpC → Sp∗C is an anti-equivalence between commutative affine
k-groups and commutative k-formal-groups. This can also be explained as follows:

For any commutative k-group-functor G, we define the Cartier dual of G as the commutative
k-group-functor D(G) such that, for R ∈Mk,

D(G)(R) = MorGrR(G⊗k R,µR)

if G and H are two commutative k-group-functors, then it is equivalent either to give a homomor-
phism G → D(H), or a homomorphism H → D(G), or a “bilinear” morphism G ×H → µk. In
particular, there is a canonical biduality homomorphism

αG : G→ D(D(G))
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2.5 The Frobenius and the Verschiebung morphisms

If k′ ∈Mk, then D(G⊗k k
′) = D(G)⊗k k

′, and αG⊗kk′ = αG ⊗k k
′.

Theorem 2.4.3. (1) If G is an affine commutative k-group, {D(G) is a commutative k-formal
group. More precisely, ifG = SpA, where A is a k-biring with antipodism, then {D(G) = Sp∗A. The
functor G 7→ {D(G) is an anti-equivalence between affine commutative k-groups and commutative
k-formal-groups.

(2) If G is a finite commutative k-group, then D(G) also is; αG is an isomorphism, and G 7→
D(G) induces a duality in the category of finite commutative groups. Moreover, rk(G) = rk(D(G)).

Proof. Let G = SpA, where A is a k-biring with involution. Then, for R ∈Mfk,

{D(G)(R) = MorGrR(G⊗k R,µR) = {x ∈ A⊗k R,∆x = x⊗ x, εx = 1} = Sp∗A(R)

to prove (1); it remains only to show that the multiplication in A giving the group structure of
D(G) is the given one; this verification is straightforward. The proof of (2) is similar. ■

Example 8. (1) D(Z/nZ)k =n µk and conversely.

(2) (char (k) = p 6= 0) There is a canonical bilinear morphism

f : pαk × pαk → µk

given by f(x, y) = exp(xy) = 1+xy+ · · ·+(xy)p−1/(p−1)!. It defines an isomorphism D(pαk) ∼=p

αk.

(3) D(µk) = Zk, hence {D(µk) = xZk.

2.5 The Frobenius and the Verschiebung morphisms

Remark 2.5.1. Suppose char (k) = p 6= 0. The functor G 7→ G(p) and the morphism FG :

G → G(p) commutes with products. This implies that, if G is a k-group-functor, then G(p) has
a natural structure of a k-group-functor, and FG is a homomorphism. The same is true for
k-formal-group-functors.

Proposition 2.5.2. We define G(pn) by G(pn) = (G(pn−1))(p), and Fn
G : G → G(pn) by Fn

G =

Fn−1
G(p) ◦ FG. Let G be a commutative affine k-group, we have D(G(p)) = D(G)(p). By Cartier

duality, there is therefore a unique homomorphism (the Verschiebung morphism)

VG : G(p) → G

such that {D(VG) = F
{D(G)

. If G = SpA, then {D(G) = Sp∗A, and we see that VG = SpVA.

In the same way, we define the Verschibung homomorphism for commutative k-formal groups.
One defines also V n

G : G(pn) → G in the same way as Fn
G.

Proposition 2.5.3. If f : G→ H is a homomorphism of commutative affine k-groups (or k-formal
groups), then the following diagram is clearly commutative:

G(p) G G(p)

H(p) H H(p)

VG FG

f (p)

VH

f f (p)

FH
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Proposition 2.5.4. If G is an affine commutative k-group (resp. a commutative k-formal group),
then

VG ◦ FG = pidG, FG ◦ VG = pidG(p)

Equivalently, VG(FG(x)) = px, FG(VG(x)) = px (additive notation).

Proof. It is sufficient to prove this for the affine case, because the formal case follows by Cartier
duality. Moreover, the first formula (for any G) implies the second one; by the functorial of F and
Y , one has a commutative diagram,

G G(p)

G(p) G(p2)

VG

F
G(p)

V
G(p)

FG

and FG ◦ VG = VG(p) ◦ FG(p) .

To prove VG ◦ FG = pidG, one has a commutative diagram (where A = O(G)):

TSpA ⊗pA

A

A(p) A

product

FA

∆p

VA

or

SpTSp
A Gp

G

G(p) G

δ

FG

πp

VG

with δ(g) = (g, · · · , g), and πp(g1, · · · , gp) = g1 + · · ·+ gp. Then VG ◦ FG = πp ◦ δ = pidG. ■

Remark 2.5.5. The above diagram gives a direct definition of VG.

Example 9. V : µk → µk is the identity, V : αk → αk is zero. This follows from the fact that F
is an epimorphism for αk and µk and that pidµk

= Fµk
, pidαk

= 0.

2.6 The category of affine k-groups

Definition 2.6.1. Recall that k is supposed to be a field. Let ACk be the category of all affine
commutative k-groups

Theorem 2.6.2 (Grothendieck). The category ACk is Abelian.

(a) ACk is an additive category; clear.
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2.6 The category of affine k-groups

(b) Any morphism f : G→ H of ACk has a kernel: one has

Ker(f) = G×H e, O(Ker(f)) = O(G)/m(H)O(G)

(m(H) = KerεH : O(H)→ k). Remark that O(G)→ O(Ker(f)) is surjective.

(c) Any morphism f : G→ H of ACk has a cokernel; One takes Cokerf such that

O(Cokerf) = O(H)G = {f ∈ O(H), f(g + h) = f(h), ∀g ∈ G(R), h ∈ H(R)}

= {f ∈ O(H), (1⊗O(f))∆H(f) = f ⊗ 1}

Remark that O(Cokerf)→ O(H) is injective.

(d) There is only one thing more, and this is the fundamental fact, that any monomorphism
is a kernel, and any epimorphism is a cokernel.

More precisely

Theorem 2.6.3. Let f : G→ H be a morphism of ACk.

(1) The following conditions are equivalent:

• f is a monomorphism,

• O(f) is surjective (i.e., G is a closed subgroup of H),

• f is a kernel.

(2) The following conditions are equivalent:

• f is an epimorphism,

• O(f) is injective,

• O(f) : O(H)→ O(G) makes a faithfully flat O(H)-module,

• O(f) is a cokernel.

For a proof see [DG70] III, 3.7.4. The main point is (f mono)⇒(f kernel) or equivalently (f
mono)⇒(f = Ker(Cokerf)).

Corollary 2.6.4. If k′ is an extension of k, then G 7→ G⊗k k
′ is an exact functor.

Corollary 2.6.5. Let 0 → K → G → H → 0 be an exact sequence, then the O(G)-algebra
O(G)⊗O(H) O(G) is isomorphic to O(G)⊗O(K).

Clear, the morphism (g, k) 7→ (g, gk) of G×K → G×H G is an isomorphism.

Corollary 2.6.6. If 0 → K → G → H → 0 is an exact sequence with K algebraic (resp. finite
of rank r); then O(G) is a finitely presented O(H)-ring (resp. a finitely generated projective
O(H)-module of rank r).

AsO(G)→ O(H) is faithfully flat, this also follows from thatO(G)⊗O(H)O(G) ∼= O(G)⊗O(K)

as O(G)-algebras.
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Corollary 2.6.7. If 0→ K → G→ H → 0 is an exact sequence, then G is algebraic (resp. finite)
if and only if H and K are. In the finite case, one has rk(G) = rk(K)rk(H).

If O(G) is finitely generated or finite, so is the subalgebra O(H) and the quotient O(K). The
converse and the last assertion follow from the above corollary.

Corollary 2.6.8. If f : G → H is an epimorphism (resp. and if Kerf is algebraic, resp. finite)
and if R ∈Mk, and h ∈ H(R), there exists an R-ring S faithfully flat (resp. and finitely presented,
resp. finite and projective) and a g ∈ G(S) such that f(g) = hS .

Corollary 2.6.9. If f : G→ H is an epimorphism with Kerf algebraic, if L ∈Mk is a field, and
h ∈ H(L), there exists a finite extension L′ of L and a g ∈ G(L′) with f(g) = hL′ .

Remark 2.6.10. If f is an epimorphism (without any hypothesis on Ker(f)), then f(L) is
surjective for any algebraically closed field L.

Remark 2.6.11. By Cartier duality the category of commutative k-formal groups also is Abelian,
and Spf(ϕ) is a monomorphism (resp. an epimorphism) if and only if ϕ is surjective (resp.
injective).

Theorem 2.6.12. (a) The Abelian category ACk satisfies the axiom: it has directed projective
limits, and a directed projective limit of epimorphisms is an epimorphism.

(b) The Artinian objects of ACk are the algebraic groups. Any object of ACk is the directed
projective limit of its algebraic quotients.

Proof. (a) is clear from 2.6.3: One has lim← Spϕi = Sp lim→ ϕi and a directed inductive limit of
injective maps is injective.

For (b), see [DG70] II, 2.3.7. ■

By Cartier duality, the dual statements hold for the category of commutative k-formal-groups.

Remark 2.6.13. From now on we shall mainly speak about commutative groups. We say group
instead of commutative group unless otherwise states. From now on also, k is a field, p denotes
the characteristic of k, and Π = Gal(ks/k). Our main interest will be the case p 6= 0. As we shall
see, the case p = 0 is rather trivial.

2.7 Etale and constant formal-groups

Remark 2.7.1. We already defined and studied etale affine (resp. formal) groups. They are
equivalent to finite (resp. all) Galois modules by

E 7→ (E ⊗k ks)(ks) =
∪

K/k sep finite
E(K)

If p 6= 0, then G is etale iff KerFG = e, and this implies that F is an isomorphism. It follows
that subgroups, quotients and extensions (direct limits in the formal case) of etale groups also are
etale. The same statement is true if p = 0.
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2.7 Etale and constant formal-groups

Recall, that the formal-group G = SpfA is local (We shall also say connected) if A is local or
equivalently if G(K) = {0} for any field K. A morphism from a connected group to an etale group
is zero.

Proposition 2.7.2. Let G be a formal-group.

(a) There is an exact sequence (unique up to isomorphism)

0→ G0 → G→ π0(G)→ 0

where G0 is connected, and π0(G) etale. If R ∈ Mfk and n is the nilradical of R then G0(R) =

Ker(G(R)→ G(R/n)). If p 6= 0, then G0 is the limit of the Ker(Fn
G : G→ Gpn), n ≥ 0. If k → k′

is an extension then (G⊗k k
′)0 = G0 ⊗k k

′, π0(G⊗k k
′) = π0(G)⊗k k

′.

(b) If k is perfect, there is a unique isomorphism G ∼= G0 × π0(G).

Proof. Write G = SpfA =
⨿

SpfAm. Let A0 be the local factor Am0 corresponding to the ideal
m0 = Ker(ε : A → k). Call G0 = SpfA0; by construction, G0(R) = Ker(G(R) → G(R/n)) for
R ∈Mk; it follows that G0 is a subgroup of G. If k → k′ is an extension, then A0 ⊗k k

′ is local,
because the residue field of A0 is k; it follows that (G ⊗k k

′)0 = G0 ⊗k k
′. Suppose p 6= 0, then

KerFn
G = SpfA/mpn

0 , where mpn

0 is the closed ideal of A generated by the xpn , x ∈ m0; hence∪
nKerFn

G = Spf(lim←A/m
pn

0 ) = SpfA0 = G0. To prove (a), it only remains to show that G/G0

is etale.

Remark first that G is etale if and only if G0 = e: replacing k by k̄ to be algebraically closed;
if G0 = e then A0 = k; but then all the Am are isomorphic (by translation); hence A ∼= kE and G

is etale. To prove G/G0 is etale is therefore equivalent to prove (G/G0)0 = e; if H is the inverse
image of (G/G0)0 in G, then H is an extension of two connected groups; this implies that H is
connected (for any field K in Mfk then 0→ G0(K)→ H(K)→ (G/G0)(K) is an exact sequence,
hence H(K) = {0}) hence H ⊆ G0, i.e., H = G0 and (G/G0)0 = e.

Suppose now k is perfect. Let km be the residue field of Am, and B =
∏
km. Then SpfB

is etale and is a subgroup of G (because B is quotient biring of A); put Ge = SpfB. Then
(G ⊗k k̄)

e = Ge ⊗k k̄ as is readily checked, and G is the product of G0 and Ge, because this
becomes true by going to k̄. ■

Definition 2.7.3. An affine group G is said to be infinitesimal if it is finite and local, equivalently,
if G is algebraic and G(k̄) = e. By the preceding proposition, we see that a finite group is an
extension of an etale group by an infinitesimal group and this extension splits if k is perfect.

Definition 2.7.4. A (not-necessarily commutative) connected formal group G = SpfA is said to
be of finite type if A is Noetherian; the dimension of G is by definition the Krull dimension of A.

Let m be the maximal ideal of A; it is well-known that A is Noetherian if and only if [m/m2 :

k] <∞, and that dimG ≤ [m/m2 : k].

Lemma 2.7.5. A connected formal group G is of finite type if and only if KerFG is finite. If G
is of finite type, then Ker(Fn

G) is finite for all n.
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Proof. If KerFG is finite, then [A/m(p)] ≤ ∞, hence [m/m2 : k] < ∞. Conversely, if m/m2 is
generated by the classes of x1, · · · , xn, then A is a quotient of k[[x1, · · · , xn]], and A/m(pn) is a
quotient of the finite k-ring A[[x1, · · · , xn]]/(x1, · · · , xn)(p

n). ■

Remark 2.7.6. It follows that if p 6= 0 a connected formal group of finite type is an inductive
limit of finite type (G = lim→KerFn

G).

Proposition 2.7.7. If G is an algebraic group-scheme, then the “connected completion” Ĝ0 is of
finite type:

Ĝ0 = SpfÔG,e[= lim
→

KerF 0
G if p 6= 0]

2.8 Multiplicative affine groups

Lemma 2.8.1. Let G be a k-group-functor. Then the following conditions are equivalent:

(i) G is the Cartier dual of a constant group.

(ii) G is an affine k-group and the k-ring O(G) is generated by the characters of G (i.e.,
homomorphisms from G to µk).

Such a group is called diagonalizable.

Proof. If G = D(Γk), then D(R) = MorGrR(ΓR, µR) = Hom(Γ, R∗) = MorMk
(k[Γ], R), hence

G = Spk[Γ], where k[Γ] is the algebra of the group Γ (note that ∆γ = γ ⊗ γ, εγ = 1, σγ = γ−1,
γ ∈ Γ), and each γ ∈ Γ ⊆ k[Γ] is a character of G.

Conversely, if G is affine and O(G) generated by characters, let Γ be the group of all characters
of G; then the canonical map k[Γ] → O(G) is surjective. But it is always injective (Dedekind’s
lemma on linear independence of characters), hence k[Γ] ∼= O(G). ■

Theorem 2.8.2. Let G be a k-group. Then the following conditions are equivalent:

(i) G⊗k ks is diagonalizable.

(ii) G⊗k K is diagonalizable for a field K ∈Mk.

(iii) G is the Cartier dual of an etale k-group.

(iv) {D(G) is an etale k-formal group.

(v) MorGrk(G,αk) = 0.

(vi) (If p 6= 0), VG : G(p) → G is an epimorphism.

(vii) (If p 6= 0), VG : G(p) → G is an isomorphism.

Such a group is called multiplicative.

(vi) and (vii) are the dual version for that G is etale iff FG is injective iff FG is an isomorphism.

Proof. The implications (i)⇐⇒ (iv)⇐⇒ (vii)⇐⇒ (vi) are clear.

Proof of (v)⇐⇒ (iv). We know that Grk(G,αk) is the set of primitive elements of O(G); let
A = O(G) and let A′ be the ring of D̂(G) (i.e. the topological dual of the coring A). By duality,
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2.9 Unipotent affine groups. Decomposition of affine groups

a primitive element of A corresponds to an algebra morphism

A′ → k[t]/t2

compatible with the augmentations of A′ and k[t]/t2. All primitive elements are zero if and only
if A′0 has no quotients isomorphic to k[t]/t2, which means that A′0 = k, i.e. D̂(G)0 = e, i.e. D̂(G)

is etale.

End of the proof. If k′ is an extension of k, then condition (v) for G is equivalent to condition
(v) for G⊗ k′. This implies the equivalence of all conditions except (iii). It is clear that (iii)⇒(i)
(definition); conversely, if D̂(G) is etale, then let E be the etale k-group such that Ê = D̂(G); we
claim that D(E) ∼= G. This is easy if k = ks, because E is constant; the general case is proved by
going to ks (see [DG70] IV, 1.3.2). ■

Remark 2.8.3. The multiplicative groups correspond by duality to etale formal groups; they form
a thick subcategory (= stable by subgroups, quotients, extensions) stable for lim←, of ACk, called
ACmk, and anti-equivalent to the category of Galois-modules: to G ∈ ACmk corresponds the
Galois-module X(G) = D̂(G⊗k ks)(ks) = MorGrks (G⊗k ks, µks).

Remark 2.8.4. If E is an etale k-group, then D(E) is multiplicative and D̂(D(E)) = Ê; in fact,
one already has D(D(E)) = E ([DG70], loc. cit.). It implies that the antiequivalence between
multiplicative groups and etale groups can also be given (without speaking about formal-groups at
all) by E 7→ D(E), G 7→ D(G).

2.9 Unipotent affine groups. Decomposition of affine groups

Theorem 2.9.1. Let G be an affine k-group. The following conditions are equivalent:

(i) {D(G) is a connected formal group.

(ii) Any multiplicative subgroup of G is zero.

(iii) For any subgroup H of G, H 6= 0, we have MorGrk(H,αk) 6= 0.

(iv) Any algebraic quotient of G is an extension of subgroups of αk.

(v) (If p 6= 0),
∩
ImV n

G = e.

Such a group is called unipotent.

The last condition is the dual version for that G = lim→KerFn
G if G is connected and of finite

type.

Proof. The equivalence of (i) and (ii) is clear (the formal group H is connected, iff π0(H) = e,
i.e., iff it has no etale quotients). The equivalence of (ii) and (iii) follows from the theorem in the
above subsection. The equivalence of (iii) and (iv) is clear because algebraic groups are Artinian.
Suppose p 6= 0. If G satisfies (iv), then for any algebraic quotient H of G, one has V n

H = 0 for large
n (recall that Vαk

= 0). It follows that
∩
ImV n

G has no algebraic quotients, hence is e. Conversely,
if (v) is true for G, G cannot contain a non-zero multiplicative subgroup H, for V n

H : H(pn) → H

is an epimorphism for all n. ■
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Remark 2.9.2. The unipotent groups correspond by duality to connected formal groups. They
form a thick subcategory, stable for lim←, of ACk, called ACuk.

Theorem 2.9.3. By duality, the local-etale exact sequence gives that an affine group is in a
unique way of a unipotent group by a multiplicative group. This extension splits if k is perfect.

Remark 2.9.4. In particular, if k is perfect, any finite group is uniquely the product of four
subgroups which are respectively etale multiplicative, etale unipotent, infinitesimal multiplicative
and infinitesimal unipotent. Therefore the category Fk of finite (commutative) k-groups splits as
a product of four subcategories, called Femk, Feuk, Fimk, Fiuk. The categories Feuk and Fimk

are dual to each other, the categories Femk and Fimk are autodual.

Proposition 2.9.5. (1) Let p = 0. Then Fk = Femk: any finite (commutative) k-group is etale
and multiplicative.

(2) Let p 6= 0 and k be algebraically closed. Any (commutative) finite k-group is an extension
of copies of pαk, pµk and (Z/rZ)k, r prime.

Proof. (1) By duality, it suffices to prove that any finite unipotent group is 0. Such a group is a
product of an etale unipotent group and an infinitesimal unipotent group; by the first theorem,
these two groups are extensions respectively of etale subgroups of αk and infinitesimal subgroups of
αk. Any etale subgroup of αk must be 0, because αk(k̄) = k̄ has no finite subgroups; an infinitesimal
subgroup of αk is of the form Spk[T ]/Tn where nmust be such that ∆Tn ⊆ (Tn)⊗k[T ]+k[T ]⊗(Tn),
this means (T + T ′)n = αTn + βT ′n and implies n = 1.

(2) Let G ∈ Fk. If G is etale, then G = Γk, where Γ is a finite group; but Γ is an extension of
groups Z/rZ, r prime, and G is an extension of (Z/rZ)k. If G is infinitesimal and multiplicative,
then G = D(Γk), where Γk is finite and Gr(Γ, k̄∗) = 0; this implies Γ is p-torsion, and G is
an extension of copies of D((Z/pZ)k) = pµk. If G is infinitesimal and unipotent, then G is an
extension of infinitesimal subgroups of αk. These are the prαk, because (T + T ′)n = αTn + βT ′n

implies n = pr; but prαk is a p-fold extension of pαk (remark that prαk/pαk = pr−1αk
). ■

Corollary 2.9.6. If m is a prime, and G a finite (commutative) k-group, then mαidG = 0 for
large α if and only if rk(G) is a power of m.

It follows from the multiplicativity of the rank, the fact that rk(G ⊗k k̄) = rk(G) and the
obvious formulas:

rk((Z/rZ)k) = r, rk(pαk) = rk(pµk) = p

In particular, if pαidG = 0, then rk(G) = plength(G⊗kk̄), where length(G) is the length of a Jordan-
Holder series of G.

2.10 Smooth formal-groups

Definition 2.10.1. A (not-necessarily commutative) connected formal group G = SpfA is said to
be smooth if A is a power-series algebra k[[x1, · · · , xn]]. In that case, the coproduct ∆ : A→ A⊗̂A
is given by a set of formal power series:

Φ(X,Y ) = (Φi(x1, · · · , xn, y1, · · · , yn)), i = 1, 2, · · · , n
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∆ is given by a set of homomorphisms

∆(R) : (SpfA⊗̂A)(R)→ SpfA

which are precisely

∆(R) : Homcts
k−alg(k[x1, · · · , xn, y1, · · · , yn], R)→ Homcts

k−alg(k[x1, · · · , xn], R)

Since any f ∈ Homcts
k−alg(k[x1, · · · , xn], R) only depends on the values of x1, · · · , xn, and

f(xi) takes values in Ker(ε), where ε : R → k the structure homomorphism, then
Homcts

k−alg(k[x1, · · · , xn], R) ∼= (Ker(ε))n. Thus, ∆(R) induces a morphism

Φ : (Kerε)2n → (Kerε)n

(X,Y ) 7→ (Φi(x1, · · · , xn, y1, · · · , yn))

between k-algebras.

and the axioms (Ass) and (Un) give

• (Ass) Φ(X,Φ(Y, Z)) = Φ(Φ(x, Y ), Z).

• (Un) Φ(0, Y ) = Φ(X, 0) = 0.

It is easily proved, using the implicit function theorem, that the existence of an antipodism is a
consequence of (Ass) and (Un). The axiom (Com) can be written.

• (Com) Φ(X,Y ) = Φ(Y,X).

Such a set {Φi} is a formal-group-law in the sense of Dieudonne.

Theorem 2.10.2. Let G = SpfA be a (not-necessarily commutative) connected formal group if
finite type.

(1) If p = 0, then G is smooth.

(2) If p 6= 0, the following conditions are equivalent:

(a) G is smooth,

(b) A⊗k k
p−1 is reduced.

(c) FG : G→ G(p) is an epimorphism.

Proof. Remark first that in (2) we have (a)⇒(b); moreover (c) is equivalent to FA : A(p) → A

being injective, or to A(p) ∼= A⊗k k
p−1 being reduced. We then have to prove that if, either p = 0,

or p 6= 0 and A⊗k k
p−1 is reduced, then A ∼= k[[x1, · · · , xn]].

Let first m be Ker(ε : A→ k) and δ : m/m2 → k be a linear form. We claim that there exists
a continuous k-derivation D of A such that for a ∈ m, one has εD(a) = δ(a mod m2). Define first
δ̄(a) = δ((a−εa) mod m2); then δ̄(ab) = ε(a)δ̄(b)+ε(b)δ̄(a); put D = (1⊗ δ̄)◦∆: if ∆a =

∑
ai⊗bi,
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then Da =
∑
aiδ̄bi. One has εDa =

∑
ε(ai)δ̄(bi) = δ̄(

∑
ε(ai)bi) = δ̄a; it remains to dhow that D

is derivation:

D(ab) = (1⊗ δ)∆(ab) = (1⊗ δ̄)(∆a∆b) = (1⊗ ε)∆a(1⊗ δ̄)∆b+ (1⊗ ε)∆b(1⊗ δ̄)∆a = aDb+ bDa

Let now ζi be elements of m such that their classes modulo m2 form a basis of m/m2. The
canonical map

f : k[[x1, · · · , xn]]→ A, f(xi) = ζi

is surjective. Suppose it is not injective. Let Φ ∈ Ker(f), Φ 6= 0, with minimal valuation; certainly
v(Φ) > 0 (because Φ(0) = εf(Φ) = 0). By the above remark, there exists continuous derivations
Di of A with Di(ζj) ≡ δij(mod m). Clearly 0 = Dif(Φ) =

∑
f

Å
∂Φ

∂xj

ã
Di(ζj). But the matrix

(Di(ζj)) is congruent mod m to the identity matrix, hence is invertible. It follows that ∂Φ

∂xj
= 0.

If p = 0, then Φ must be 0, and f is injective. If p 6= 0, then there exists Ψ ∈ k1/p[[x1, · · · , xn]]
with Φ = Ψp; extend f to f ′ : k1/p[[x1, · · · , xn]] → A ⊗k k

1/p; then f ′(Ψ)p = f(Φ) = 0. Because
A ⊗k k

1/p is reduced, this implies that f ′(Ψ) = 0. But Φ was supposed of minimal valuation,
hence Ψ = 0 (if not, decompose Ψ as a sum

∑
λiψi, λi ∈ k1/p, ψi ∈ Ker(f), ψi 6= 0, and note that

v(Ψ) ≥ inf v(ψi)) and Φ = 0. ■

Remark 2.10.3. The preceding theorem can be strengthened:

(1) (Cartier). If p = 0 and G = Sp∗C is a connected (not necessarily commutative) formal-
group, then C is the universal enveloping algebra of the Lie algebra g of G. This implies that the
category of all connected formal-groups is equivalent to the category of all Lie algebras over k.
By the Poincare-Birkhoff-Witt theorem, this also implies that, if g is finite dimensional, then G

is smooth. Moreover, if G is commutative, then g is abelian, hence G ∼= (g0)(I); by duality, any
unipotent (commutative) k-group is a power of the additive group.

(2) (Dieudonne-Cartier-Gabriel). If p 6= 0, k is perfect, G is any (not-necessarily commutative)
connected formal group of finite type, H a subgroup, and G/H = SpfA, then is of the form
k[[x1, · · · , xn]][y1, · · · , yd]/(yp

r1

1 , · · · , yp
rd

d ). This implies for instance to A = ÔG,e, G an algebraic
k-group.

Corollary 2.10.4. Suppose p 6= 0, and let G be a connected formal group of finite type.

(1) If k is perfect, there exists a unique exact sequence of connected groups

0→ Gred → G→ G/Gred → 0

with Gred smooth, and G/Gred infinitesimal (= finite).

(2) For large r, the group G/Ker(F r
G) = Im(G→ G(pr)) is smooth.

Proof. (1) The uniqueness is clear, because any homomorphism from a smooth group to an in-
finitesimal group is 0 (look at the algebras). Let G = SpfA, and Gred = SpfAred, where Ared is
the quotient of A by its nilideal.

Because Ared⊗̂kAred is reduced (see the Appendix)

∆n ⊆ A⊗̂n+ n⊗̂A
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and Gred is a subgroup of G, smooth by the theorem. Moreover G/Gred = SpfB, where

B = {x ∈ A,∆x− x⊗ 1 ∈ A⊗ n}

If x ∈ B, ε(x) = 0, then x = ε⊗ 1(∆x−x⊗ 1) ∈ n. It implies B ⊆ k+n, and B is Artinian, hence
finite.

(2) It is clear that H = G/Fn
G is smooth if and only if H ⊗k k̄ is. Replacing k by k̄, we can

suppose k perfect and apply (1). There exists an i with F i(G/Gred) = 0; but F i(Gred) = G
(pi)
red

because Gred is smooth. Hence F iG = F i(Gred) = G
(pi)
red and F iG is smooth. ■

Corollary 2.10.5. Let G be a connected formal group of finite type, and n = dimG. Then
rk(CokerF i

G) is bounded and

rk(Ker(F i
G)) = pnirk(CokerF i

G)

Proof. If G is smooth, then FG is an epimorphism, and KerF i
G
∼= Spfk[[x1, · · · , xn]]/(x1, · · · , xn)p

r ,
hence rk(KerF i

G) = pni. In the general case, let r be such that H = F rG is smooth, let K =

Ker(F r
G); we have exact sequences:

0→ Ker(F i
K)→ Ker(F i

G)→ Ker(F i
H)→ Coker(F i

K)→ Coker(F i
G)→ 0

0→ Ker(F i
K)→ K → K(pi) → Coker(F i

K)→ 0

The second sequence gives rk(Coker(F i
K)) = rk(Ker(F i

K)) ≤ rk(K) < ∞, the first one gives the
claimed formula. ■

Corollary 2.10.6. (1) Let 0 → G′ → G → G′′ → 0 be an exact sequence of connected formal-
groups. Then dim(G) = dim(G′) + dim(G′′).

(2) If f : G′ → G is a homomorphism of connected formal group, with G smooth, and
dimG = dimG′, then f is an epimorphism if and only if Ker(f) is finite.

Proof. (1) follows from the snake diagram and the preceding corollary.

(2) We have the equivalence (Ker(f) finite) ⇐⇒ (dim(Ker(f)) = 0) ⇐⇒ (dim f(G′) =

dimG′)⇐⇒ (dim f(G′) = dimG). But dim(f(G′)) = dimG gives

rkKer(F i
f(G′)) ≥ p

i dimG = rk(Ker(F i
G))

hence Ker(F i
f(G′)) = Ker(F i

G) and G =
∪
Ker(F i

G) =
∪
Ker(F i

f(G′)) = f(G′). ■

2.11 p-divisible groups

Definition 2.11.1. Suppose p 6= 0. A (commutative) formal group G is called p-divisible (or a
Barsotti-Tate group) if it satisfies the three following conditions:

(1) p · idG : G→ G is an epimorphism,

(2) G is a p-torsion group: G =
∪

j Ker(pj idG),

(3) Ker(pidG) is finite.
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We know that rk(Ker(pidG)) = ph, h ∈ N. This h is called the height height (G) of G. Using
(1), this gives

rk(Ker(pj idG)) = pjheight (G)

The multiplicativity of the rank gives the exactness of the sequences

0→ Kerpj ↪→ Kerpj+k pj−→ Kerpk → 0

Converselly, if we have a diagram

G1
i1−→ G2

i2−→ G3 → · · ·

where the Gi are finite k-groups with the following properties

(a) rk(Gj) = phj , h a fixed integer,

(b) the sequence 0→ Gj
ij−→ Gj+1

pj−→ Gj+1 are exact,

then lim→(Gn, in) is a p-divisible formal group, of height h, and Ker(pnidG : G→ G) ∼= Gn.

This gives an alternative definition of p-divisible groups.

The Serre dual of a p-divisible group G is the p-divisible group G′ defined as follows:

Let Gj = Ker(pj idG), and let pj : Gj+1 → Gj be induced by pidG. Put G′j = D(Gj), and
i′j = D(pj) : G

′
j → G′j+1, then G′ = lim→(G′j , i

′
j) is a p-divisible formal group, with height (G′) =

height (G); it is clear that p′j = D(ij), so that (G′)′ can be identified with G.

Example 10. (1) The constant formal group (Qp/Zp); conversely, any constant p-divisible group
of height h is isomorphic to (Qp/Zp)

h
k .

(2) Let A be a (commutative) algebraic k-group, such that pidG : A → A is an epimorphism.
Then it can be shown that Ker(pidA) is finite; define

A(p) =
∪

Ker(pj idA)

Then A(p) is a p-divisible group, containing Â0 =
∪

j Ker(F jG). For instance, for A = µk, one
finds A(p) =

∪
j pjµk = (Qp/Zp)

′
k.

If A is an Abelian variety of dimension g, one knows that pidA is an epimorphism, with
rk(KerpidG) = p2g. It follows that A(p) is a p-divisible group of height 2g.

Proposition 2.11.2. Let G be a k-formal group. Then G is p-divisible if and only if the following
conditions are satisfied.

(1) π0(G)(k̄) ∼= (Qp/Zp)
r, r finite.

(2) G0 is of finite type, smooth, and Ker(V : G0(p) → G0) is finite.

Proof. If G is p-divisible, then G0 and π0(G) are, and conversely (replace k by k̄, then G is the
product of G0 and π0(G)). We already know that the etale group E is p-divisible iff E(k̄) ∼=
(Qp/Zp)

r.
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Now suppose that G is connected, Ker(FG) ⊆ Ker(VG ◦ FG) = Ker(pidG), hence G is of finite
type;m on the other hand G(p) also is p-divisible, hence Ker(VG) ⊆ Ker(FG ◦ VG) = Ker(pidG(p))

is finite, and FG is an epimorphism, because pidG(V ) = FG ◦ VG is.

Conversely, if G is smooth and KerVG finite, FG and VG are epimorphism, hence also pidG =

VG ◦ FG; this implies also an exact sequence

0→ Ker(FG)→ Ker(pidG)→ Ker(VG)→ 0

and Ker(pidG) also is finite. Finally
∪
Ker(pj idG) ⊇

∪
Ker(F j

G) = 0. ■

Example 11. If A is an algebraic unipotent k-group, then Â0 is never p-divisible, unless A is
finite. (Recall that G is unipotent iff

∩
ImV n

G = e).

Remark 2.11.3. The above exact sequence for any p-divisible group G the formula height (G) =

dim(G) + dim(G′).

Proposition 2.11.4. Let G be a connected, of finite type, smooth formal group. There exist two
subgroups H,K ⊆ G with H p-divisible, pnK for large n, H ∩K finite, and G = H +K.

Proof. Let pnG = Im(pnidG : G → G); the subgroups pnG of G are smooth (quotients of G) and
form a decreasing sequence. There exists an n such that pnG ∩ KerFG = p2nG ∩ KerFG (KerFG

is finite, hence Artinian), then FpnG/p2nG is a monomorphism. This implies pnG = p2nG, because
pnG/p2nG is connected, smooth with monomorphism Frobenius (or dimension 0). Put H = pnG,
K = Ker(pnidG). Then G = H +K, pidH is epimorphic, and pnK = 0. Therefore Ker(pidH) is
finite, hence H is p-divisible, and H ∩K ⊆ Ker(pnidH) is finite. ■

2.12 Appendix

Theorem 2.12.1. Let k be perfect field with characteristic p 6= 0, A and B two complete Noethe-
rian k-rings with residue field k. If A and B are reduced, so is Ax⊗kB.

Proof. To be added. ■

3 Witt Groups and Dieudonne Modules

Let p be a fixed prime number.

3.1 The Artin-Hasse exponential series

Definition 3.1.1. Let k be a ring. We denote by
∧

k the affine k-group which associates with
R ∈Mk the multiplicative group 1+ tR[[t]] of formal power-series in R which constant term 1 (as
a functor,

∧
k is obviously isomorphic to ON

k ). For n ≥ 1, let
∧(n)

k be the closed subgroup such
that

(n)∧
k

(R) = 1 + tnR[[t]]
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one has obvious exact sequences

0→
(n+1)∧

k

→
(n)∧
k

→ αk → 0

where the first morphism is the inclusion, the second one being (1 + ant
n + · · · ) 7→ an. The k-

group
∧

k hence appears as the inverse limit of the
∧

k /
∧(n+1)

k , each
∧

k /
∧(n+1)

k being an n-fold
extension of the additive group. (If k is a field, then

∧
k is a unipotent group).

Let F = 1− t+ · · · be a fixed element of Λ(k) = 1 + yk[[t]]. Then we have an isomorphism of
k-schemes

ϕ : ON+

k →
∧
k

by ϕ((an)) =
∏
F (ant

n).

If k = Q, then take F (t) = exp(−t); one has F (at)F (bt) = F ((a + b)t), so that ϕ is an
isomorphism of k-groups from α

N+

k to
∧

k. If k is a field with characteristic p, it is not possible to
find F ∈ 1 + tk[[t]] with

F (t) = 1− t+ · · · ; F (at)F (bt) = F (ct)

We find first F (T ) = 1− t+ · · ·+(−t)p−1/(p− 1)!+ · · · and for the coefficient of T p we fine 0 = 1

and the computation fails. But remark that for any F one certainly has a formula

F (at)F (bt) =
∏
i>0

F (λi(a, b)t
i)

where λi ∈ k[X,Y ].

The idea is to find an F such that most of the λi vanish. Actually we shall find F with λi = 0

if i is not a power of p.

Proposition 3.1.2. Let µ be the Mobius function, then there is a classic formula

exp(−t) =
∏
n

(1− tn)µ(n)/n

Proof. Recall first that µn = 0 if n is divisible by the square of a prime, µ(p1 · · · pk) = (−1)k if
p1, · · · , pk are distinct primes and µ(1) = 1. For n > 1, one has∑

d|n

µ(d) = 0

It follows that

−t =
∑
n≥1
− 1

n
tn

∑
d|n

µ(d) =
∑
d≥1

µ(d)

d

∑
m

− 1

m
tdm =

∑
d≥1

µ(d)

d
log(1− td)

■

Definition 3.1.3. If char k = p > 0, let

F (t) =
∏

(n,p)=1

(1− tn)µ(n)/n = 1− t+ · · · ;

if Z(p) = {a/b ∈ Q, (p, b) = 1}, then
F (t) ∈ Λ(Z(p))

If µ(n) 6= 0, then either (n, p) = 1, or n = pn′, (n′, p) = 1.
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Proposition 3.1.4. We have exp(−t) = F (t)/F (tp)1/p, then

F (t) = exp(−t)F (tp)1/p = exp(−t− tp

p
)F (p2)1/p

2
= · · ·

so that 
F (t) = expL(t), with

L(t) = −t− tp

p
− tp

2

p2
− · · · − tp

i

pi
− · · · − · · ·

Remark 3.1.5. The formula F (at)F (bt) =
∏
(F (λi(a, b))t

i) then can be written as L(at)+L(bt) =∑
L(λi(a, b)t

i) where λi ∈ Z(p)[X,Y ]. Going to Q, it follows immediately that λi = 0 if λ is not
a power of p, which give a formula

F (at)F (bt) =
∏
i≥0

F (Ψi(a, b)t
pi)

Definition 3.1.6. The Artin-Hasse exponential is defined as the morphism

E : ON
Z(p)
→ ΛZ(p)

such that
E((a0, · · · ), t) =

∏
n≥0

F (ant
pn)

From the above remark, it follows easily that there exists formula

E((ai) · t) · E((bi) · t) = E(Si(a0, · · · , ai, b0, · · · , bi), t)

where Si ∈ Z(p)[x0, · · · , xi, y0, · · · , yi]. Moreover, any P ∈
∧
(R), R ∈ MZ(p)

, can be uniquely
written

P (t) =
∏

(n,p)=1

E((an), t
n)

with (an) ∈ RN.

Proposition 3.1.7. The Z(p)-group ΛZ(p)
is isomorphic to the {n : (n, p) = 1}-power of the

subgroup image of E.

Remark 3.1.8. By base change a similar statement applies to ΛFp; it shows that the Artin-Hasse
exponential plays over Fp a somewhat similar role as the usual exponential over Q.

3.2 The Witt rings (over Z)

Remark 3.2.1. By 3.1.4 we can write

E((an), t) = exp

Ñ
−
∑
n≥0

tp
n
Φn

pn

é
with

Φn(a0, · · · ) = ap
n

0 + pap
n−1

1 + · · ·+ pnan

And we have
Φn(a0, · · · , an) + Φn(b0, · · · , bn) = Φn(S0, · · · , Sn)
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Lemma 3.2.2. We have Sn ∈ Z[x0, · · · , xn].

Proof. We already know that the coefficients of Si lie in Z(p) ⊆ Q. On the other hand, it is clear
from the above remark that they lie in Z[p−1]. Then the result follows by the truth Z(p)∩Z[p−1] =
Z. ■

Theorem 3.2.3. There exists a unique commutative group law on ON
Z with the following equiv-

alent properties:

(i) E : ON
Z ⊗Z Z(p) →

∧
Z(p)

is a homomorphism.

(ii) Each Φn : ON
Z → αZ is a homomorphism.

Proof. Each (i), (ii) is equivalent to the fact that (with + for the law we are constructing)

(an) + (bn) = (Sn(a0, · · · , an, b0, · · · , bn))

Hence the uniqueness; it remains to be shown that the law defined above is a commutative group
law with unit element (0, 0, · · · ). The associativity, commutativity and unit element axioms can
be expresses by polynomials identities, with coefficients in Z, in the coefficients of the Si. These
identities are satisfied after going from Z to Z[p−1], because the φn⊗ZZ[p−1] defines an isomorphism
ON

Z[p−1] → ON
Z[p−1]. Because Z ⊆ Z[p−1], we are done. The existence of an inverse element can be

proved if p 6= 2 by the remark that ϕ(−x0,−x1, · · · ) = −ϕn(x0, x1, · · · ); in the general case, the
antipodism over Z[p−1] is given by polynomials with coefficients in Z[p−1]; but these coefficients
are also in Z(p), hence are in Z. ■

Definition 3.2.4. The Z-scheme ON
Z , together with the above law, is called the Z-group of Witt

vectors of infinite length relative to p and denoted by W .

If w = (an) ∈ W (R) = RN, an is the nth-component of w and Φn(w) the nth-phantom-
component of w. The phantom components define a group isomorphism from W ⊗Z Z[p−1] to
αN
Z[p−1].

Let T :W →W be the monomorphism defined by

T ((a0, · · · , an, · · · )) = (0, a0, a1, · · · )

Then Φ0(Tw) = 0, Φn(Tw) = pΦn−1(w), n ≥ 1; it follows that T is group-homomorphism, called
the translation. We define the group Wn of Witt0vectors of length n by the exact sequence of
group functors

0→W
Tn

−−→W
Rn−−→W → 0

(i.e. by Wn(R) = CokerTn(R) for each R). By the definition of the group law, it is clear that
(a0, a1, · · · ) = (a0, · · · , an−1, 0, · · · ) + Tn(an, an+1, · · · ), which means that as a scheme, Wn is On

k ,
the projective morphism W → Wn being (a0, · · · ) 7→ (a0, · · · , an−1). The group law on Wn is
(a0, · · · , an−1) + (b0, · · · , bn−1) = (S0(a0, b0), · · · , Sn−1(a0, · · · , an−1, b0, · · · , bn−1)) in particular
W1 = α. The snake diagram gives from the above exact sequence translation homomorphism
T : Wn → Wn+1, such that T (a0, · · · , an−1) = (0, a0, · · · , an−1), projection homomorphism R :

Wn+1 →Wn such that R(a0, · · · , an) = (a0, · · · , an−1) and exact sequence

0→Wm
Tn

−−→Wn+m
Rm

−−→Wn → 0

34 2023.9



3.3 The Witt rings (over k)

Moreover, the projections W →Wn give rise to an isomorphism

W ∼= lim
←
Wn

Let τ : OZ →W be the morphism a 7→ (a, 0, · · · ). We have Φn(τ(a)) = ap
n , E(τ(a), t) = F (at).

Theorem 3.2.5. There exists a unique ring-structure on the Z-group W such that each of the
two following condition is satisfied.

(i) each Φn :W → OZ is a ring-homomorphism.

(ii) τ(ab) = τ(a)τ(b), a, b ∈ R ∈MZ.

Proof. We first replace Z by P = Z[p−1]. Then (Φn) : WP → αN
P is an isomorphism, hence the

existence and uniqueness of a ring structure on WP satisfying (i); moreover, because (Φn(τ(a)) =

(ap
n
)), this ring-structure satisfies (ii); conversely, consider a ring structure on the P -group αN

P

such that (ap
n
) · (bpn) = ((ab)p

n
); the multiplication is given by polynomials of the form (xn) ·

(yn) = (
∑
a
(n)
ij xiyj), with

∑
a
(n)
ij a

pibp
j
= (ab)p

n ; this gives a(n)ij = 0 except with i = j = n, and
(xn)(yn) = (xnyn). This ends the proof for P .

The multiplication in WP we just found is given by polynomials

Mn(x0, · · · , xn, y0, · · · , yn) ∈ Z[p−1][x0, · · · , xn, y0, · · · , yn]

(a0, · · · )× (b0, · · · ) = (Mn(a0, · · · , b0, · · · ))

By definition, Φi((Mn)) = Φi((xn))·Φi((yn)), i = 1, 2, · · · . We can prove thatMn ∈ Z[x0, · · · , y0, · · · ]
([DG70] V, section 1.2); the above formula defines then a Z-morphism W ×W → W . The fact
that it gives a ring structure satisfying (i) and (ii), with unit element τ(1) = (1, 0, · · · ) can be
expressed by identities between polynomials with coefficients in Z; these identities are true over
P = Z[p−1] and Z→ P is injective. ■

Definition 3.2.6. The Z-ring W is called the Witt ring, each Wn is a quotient ring of W , the
canonical morphisms R :W →Wn and R :Wn+1 →Wn are ring-homomorphism (but not T !).

3.3 The Witt rings (over k)

Definition 3.3.1. From now on, k is a field with characteristic p. We denote by Wk, Wnk, the
k-rings W ⊗Z k, Wn ⊗Z k; remark that the phantom-components WK → αk are now (an) 7→ ap

n

0 .

Because Wk = WFp ⊗Fp k, we can identify W
(p)
k and Wk and the Frobenius morphism F :

Wk →Wk is given by
F (a0, · · · , an, · · · ) = (ap0, · · · , a

p
n, · · · )

It is a ring-homomorphism (because F commutes with products). Similar statements are true for∧
k and the Wnk.

Proposition 3.3.2. (a) The Verschiebung morphism of
∧

k is ϕt 7→ ϕ(tp), the Verschiebung
morphism of Wk is T , the Verschiebung morphism of Wnk is R ◦ T = T ◦R.

(b) If x, y ∈Wk(R), R ∈Mk, then V ((Fx) · y) = x · (V y).
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Proof. (a) If ϕ = 1+
∑
cnt

n ∈
∧
(R), then Fϕ = 1+

∑
cpntn, and (Fϕ)(tp) = 1+

∑
cpntnp = ϕp =

V (Fϕ). But F is an epimorphism (k is perfect?), hence V ψ = ψ(tp), for all ψ.

On the other hand, the definition of E and T shows that

E(Tx, t) = E(x, tp)

But E(x, tp) = V E(x, t) = E(V x, t) and E is monomorphism, hence V x = Tx. Projecting this
formula on Wnk, we find VWnk

= R ◦ T = T ◦R.

(b) Because F :Wk →Wk is an epimorphism, we can now suppose y = Fz, then V ((Fx) ·y) =
V ((Fx) · (Fz)) = V F (xz) = pxz = x · pz = x · V Fz = x · V y. ■

Corollary 3.3.3. If x, y ∈Wk(R), then

E(x · V y, t) = E(Fx · y, tp)

Corollary 3.3.4. If x = (a0, · · · , an, · · · ) ∈Wk(R), then px = (0, ap0, · · · , a
p
n, · · · ).

Corollary 3.3.5. Suppose k is perfect; then W (k) is a discrete valuation ring, complete, and
W (k)/pW (k) = k.

Proof. One has FW (k) =W (k) because k is perfect, hence pnW (k) = TnFnW (k) = TnW (k) and
W (k) = lim←W (k)/pnW (k). Moreover, W (k)/pW (k) =W1(k) = α(k) = k. ■

Proposition 3.3.6 (Witt). Let k be perfect, and let A be complete Noetherian local with residue
field k. Let π : A→ k be the canonical projection. There exists a unique ring-homomorphism

u :W (k)→ A

compatible with the projections W (k)→ k and π. If moreover A is a discrete valuation ring with
p · 1A 6= 0, then A is a free finite W (k)-module of rank [A/pA : k]; in particular, if pA = A, then
u is an isomorphism.

Proof. (After Cartier). Consider the ring-morphisms given by the phantom components Φn :

Wn+1(A) → A. If m is the maximal ideal of A, then Φn((xn)) ∈ mn+1 if xi ∈ m; this gives a
commutative square

Wn+1(A) A

Wn+1(k) A/mn+1

Φn

Wn+1(π) can

Φn

Let σ : k → k be given by σ(λ) = λ1/p and put un = Φn ◦Wn+1(σ
n); then, if a0, · · · , an ∈ A

un(π(a
pn

0 ), · · · , π(apnn )) = ap
n

0 + pap
n−1

1 + · · ·+ pnan(mod mn+1)

Let
u = lim

←
un :W (k)→ A

Then u is a ring-morphism and πu(α0, · · · , αn) = α0. This gives the existence of u. Let
u′ : W (k) → A be another such homomorphism; then τ ′ = u′τ : k → A is compatible with
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3.4 Duality of finite Witt groups

multiplication and such that πτ ′ = id; such a τ ′ is unique, as is well-known (because τ ′(α) must
be in

∩
(π−1(αp−n

))p
n which has only one element (Cauchy)); on the other hand, any x ∈ W (k)

can be written

x = (α0, α1, · · · ) = (α0, 0, · · · ) + (0, α1, 0, · · · ) + · · · = τ(α0) + pτ(α1/p) + p2τ(α
1/p2

2 ) + · · ·

and u′(x) must be τ ′(α0) + pτ ′(α1/p) + · · · , hence the unicity of u.

The last statement follows from the fact that if a1, · · · , ae ∈ A are a basis of A modulo pA, then
they generate the W (k)-modulo A. Therefore A is finitely generated as W (k)-module, without
torsion because pn · 1A 6= 0, hence free of rank [A/pA : k]. ■

3.4 Duality of finite Witt groups

Definition 3.4.1. For m,n ≥ 1, we put

mWn : Ker(Fm :Wnk →Wnk)

Between these finite k-groups, we have homomorphisms

mWn mWn+1

m−1Wn mWn

t

r

i

f

where i is the canonical inclusion, and f, t, r are induced by F, T,R. Clearly, i and t are monomor-
phisms, f and r are epimorphisms, and for the group mWn, we have F = i ◦ f , V = r ◦ t.

Remark 3.4.2. For any R ∈ Mk, let W ′(R) be the set of all (a0, a1, · · · ) ∈ Wk(R) such that
an = 0 for large n, and an nilpotent for all n. It is easy to check W ′(R) is an ideal in Wk(R) and
that E(w, t) is a polynomial for w ∈W ′(R); in particular, E(w, 1) is defined for w ∈W ′(R), and
we have a group-homomorphism

Ẽ :W ′ → µk

given by w 7→ E(w, 1). If x ∈Wk(R), y ∈W ′(R), then xy ∈W ′(R) and E(xy, 1) ∈ R∗; moreover,
one has

E(Tnx · y, 1) = E(Tn(x · Fny), 1) = E(x · Fny, 1)

The morphism (x, y) 7→ E(xy, 1) from Wk×W ′ to µk is bilinear, hence gives a group-homomorphism
W ′ → D(Wk) (this can be shown to be an isomorphism).

Remark 3.4.3. Let σn :Wnk →Wk be the section of Rn :Wk →Wnk define by σn(a0, · · · , an−1) =
(a0, · · · , an−1, 0, · · · ) (σn is not a group homomorphism); it is clear that σn sends mWn in W ′.

Theorem 3.4.4. For x ∈ mWn(R), y ∈ nWm(R), define

〈x, y〉 = E(σn(x)σm(y), 1)

Then 〈x, y〉 is bilinear, gives an isomorphism

mWn
∼= D(nWm)
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3 WITT GROUPS AND DIEUDONNE MODULES

and satisfies
〈x, ty〉 = 〈fx, y〉

〈x, ry〉 = 〈ix, y〉

Proof. Let x, x′ ∈ mWn(R), y ∈ nWm(R); then σn(x+x′)−σn(x)−σn(x′) is in Ker(Rn) = ImTn,
hence

σn(x+ x′) = σn(x) + σn(x
′) + Tn(u)

where u ∈W ′(R). This implies⟨
x+ x′, y

⟩
= 〈x, y〉+

⟨
x′, y

⟩
+ E(Tn(u) · σm(y), 1) = E(u · Fnσm(y), 1) = E(u · σm(Fny), 1) = 0

This proves the bilinearity of 〈•, •〉.

On the other hand, σn(fx) = Fσn(x), σm+1(ty) = Tσm(y), hence 〈fx, y〉 = 〈x, ty〉; also
σn(ix) = σn(x), then for x ∈ m−1Wn, y ∈ nWm, note that ry − y ∈ Ker(Rm−1) = Im(Tm−1), thus
ry − y = Tm−1u for some u ∈W ′(R) and

〈x, ry〉 − 〈ix, y〉

=E(σn(ix)σm−1(y), 1)− E(σn(x)σm(y), 1)

=E(σn(x) · Tm−1u, 1)

=E((Fm−1σn(x)) · u, 1)

=E(σn(F
n−1x) · u, 1) = 0

Hence 〈x, ry〉 = 〈ix, y〉.

It remains to prove that 〈•, •〉 gives an isomorphism between mWn and D(nWm); but, because
of the exact sequences

0→ mWn
iq−→ m+qWn

fm

−−→ qWn → 0

and
0→ nWm

tq−→ nWm+q
rm−−→ nWq → 0

and the adjointness of t and f and i, we are reduced by induction onm and n to the casem = n = 1.
In that case 1W1 = pαk, and 〈•, •〉 is not zero, hence the given homomorphism pαk → D(pαk) is
not zero; but, because pαk is simple, it is an isomorphism, and the proof is complete. ■

3.5 Dieudonne modules (Affine unipotent groups)

Remark 3.5.1. From now on, the field k is supposed to be perfect.

Obviously Wi = Spf(Z[x0, · · · , xi−1]) as k-functors, then Wik is affine, and further is unipotent
since

∩
ImV n

Wi
= e.

Definition 3.5.2. Let W−→ be the inductive system of ACuk:

W−→ :W1k
T−→W2k

T−→W3k
T−→ · · ·

(W−→ can be seen as the set of finite vectors with the first coordinate is not zero. )
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The ring W (k) operates on W−→ as follows. First, we denote by σ : a 7→ a(p) the Frobenius
homomorphism W (k) → W (k), and by a 7→ a(p

n) its nth power, n ∈ Z (a 7→ a(p) is bijective,
because k is perfect.) Let a ∈W (k) and w ∈Wn(R), R ∈Mk; then we define

a ∗ w = a
(p1−n)
R · w

where a
(p1−n)
R is the image of a(p1−n) in W (R), and b · w ∈ Wn(R) the product of b ∈ W (R)

and w ∈ Wn(R) = W (R)/TnW (R). By this definition, Wn(R) becomes a W (k)-module, and
T :Wn(R)→Wn+1(R) is a homomorphism of W (k)-module, because

T (a ∗ w) = T (a
(p1−n)
R · w) = T (F (ap

−n

R ) · w) = ap
−n · Tw = a ∗ (Tw)

Definition 3.5.3. For any G ∈ ACuk, we define the Dieudonne module M(G) to be the W (k)-
module

M(G) = lim
→

MorACuk
(G,Wnk)

(equivalently M(G) = IndACuk
(G,W−→)). Of course, G 7→ M(G) is a contravariant functor from

ACuk to category ModW (k) of all W (k)-modules. This construction obviously commutes with
automorphisms k ∼= k, in particular with fk : K → k. If M is a W (k)-module, let M (p) =

M ⊗W (k),σ W (k): as a group M (p) = M , but the external law is (w,m) 7→ w(p−1)m; if f ∈
MorACuk

(G,Wnk), then f (p) is a homomorphism from G(p) to W (p)
nk =Wnk. Hence a map f 7→ f (p)

from M(G) to M(G(p)); it is clear that (wf)(p) = w(p)f (p) for w ∈ W (k), and this induces an
isomorphism

M(G)(p)
∼−→M(G(p))

by means of which we always identify M(Gp) with M(G)(p).

The two morphisms FG and VG define two morphisms F = M(FG) : M(G)(p) → M(G), and
V = M(VG) : M(G) → M(G)(p), or equivalently, group homomorphisms F, V : M(G) → M(G)

with F (am) = a(p)Fm, V (a(p)m) = aV m, a ∈ W (k), m ∈ M(G). By construction, if m̄ ∈
MorACuk

(G,Wnk) represents m ∈M(G), Fm and V m are represented by FWnk
◦m̄ and VWnk

◦m̄.

Remark 3.5.4. The morphism T :Wnk →W(n+1)k being a monomorphism, the maps MorACuk
(G,Wnk)→

MorACuk
(G,W(n+1)k) are injective, and MorACuk

(G,Wnk) can be identified with a submodule of
M(G); more precisely

MorACuk
(G,Wnk) = {m ∈M(G)|V nm = 0}

It follows that any element of M(G) is killed by a power of V .

Definition 3.5.5. Let Dk be the (non-commutative) ring generated by W (k) and two elements
F and V subject to the relations

Fw = w(p)F, w(p)V = V w, FV = V F = p

It can be easily seen that any element can be written uniquely as a finite sum∑
i>0

a−iV
i + a0 +

∑
i>0

aiF
i

If G ∈ ACuk, then M(G) has a canonical structure of a left Dk-module; if K is a perfect extension
of k, there is a canonical map of Dk-modules

W (K)⊗W (k) M(G)→M(G⊗k K)

(remark thatDK
∼=W (K)⊗W (k)Dk, and that the left hand side can also be writtenDK⊗Dk

M(G)).
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3 WITT GROUPS AND DIEUDONNE MODULES

Theorem 3.5.6. The functor M induces an anti-equivalence between ACuk and the category of
allDk-modules of V -torsion. For any perfect extensionK of k, the morphismW (K)⊗W (k)M(G)→
M(G⊗k K) is an isomorphism. Moreover,

G is algebraic ⇐⇒ M(G) is a finitely generated Dk-module

G is finite ⇐⇒ M(G) is a W (k)-module of finite length

3.6 Dieudonne modules (p-torsion finite k-groups)

Proposition 3.6.1. The functor G 7→ M(G) induces an anti-equivalence between Feuk (resp.
Fiuk) and the category of Dk-modules, which are W (k)-modules of finite length, killed by a power
of V and on which F is bijective (resp. and killed by a power of F ).

This follows from the above theorem, and the fact that if G is finite, then G is etale (resp.
infinitesimal) if and only if FG is an isomorphism (resp. Fn

G = 0 for large n).

Example 12. If G = (Z/pZ)k ∈ Feuk, then M(G) = k with F = 1, V = 0; if G = pαk ∈ Fiuk,
then M(G) = 0 with F = 0, V = 0.

Corollary 3.6.2. For G ∈ Feuk or Fimk, we have

rk(G) = plength(M(G))

Definition 3.6.3. Let m,n be two positive integers; consider the canonical injection mWn →Wn;
it defines an element u ∈M(mWn), clearly V nu = Fmu = 0, hence a map of D-modules (D = Dk):

λm,n : D/(DFm +DV n)→M(mWn)

Proposition 3.6.4. λm,n is bijective.

Proof. Using the exact sequence connecting the mWn, we are already reduced to the case m =

n = 1; but D/(DF +DV ) ∼= k and M(1W1) =M(pαk) = k. ■

Corollary 3.6.5. Take m = n. Any element in D/(DFn +DV n) can be written in a unique way
x = w1−nV

n−1 + · · · + w−1V + w0 + w1F + · · · + wn−1F
n−1 where wi ∈ Wn−|i|(k); we therefore

have a canonical W (k)-linear projection

πn :Mn(nWn)→Wn(k)

defined by πn(λn(x)) = w0.

Definition 3.6.6. Let Q be the quotient field of W (k), and W∞ be the W (k)-module Q/W (k);
it can be identified with the direct limit of the system

W (k)/pW (k)
p−→W (k)/p2W (k)→ · · ·

but this system is also
W1(k)

T−→W2(k)
T−→W3(k)→ · · ·

Hence W∞ = lim→Wn(k) =W−→(k).
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Definition 3.6.7. For any Dk-module M , we denote by M∗ the following Dk-module: as W (k)-
module, M∗ = MorModW (k)(M,W∞); if f ∈M∗, then (Ff)(m) = f(V m)(p), (V f)(m) = f(Fm)(p

−1).
It is clear (duality of finite length modules over a principal ideal ring) that M 7→ M∗ induces a
duality in the category of Dk-modules which are of finite length over W (k).

Proposition 3.6.8. Let now G ∈ Fiuk, then there exists n such that V n
G = 0, Fn

G = 0; it
follows that M(G) = MorFiuk

(G, nWn); moreover V n
D(G) = 0, Fn

D(G) = 0, and M(D(G)) =

MorFiuk
(D(G), nWn). Let m : D(G)→ nWn be an element of M(D(G)); let ahn : nWn → D(nWn)

be the isomorphism, and look at the composed homomorphism

nWn
ahn−−→ D(nWn)

D(m)−−−→ D(D(G)) ∼= G

this gives a D-linear map ϕm : M(G) → M(nWn); composing this with πn : M(nWn) → Wn(k)

and the canonical injection Wn(k) → W∞, we get a W (k)-linear map M(G) → W∞, i.e. an
element of M(G)∗. Hence a map

M(D(G))→M(G)∗

This map is independent of the choice of the integer n: if we replace m : D(G) → nWn by
m′ = itm = tim : D(G) → n+1Wn+1, then D(M)ahn is replaced by ϕm′ = M(D(m)ahnfv) =

M(fv)M(D(m)ahn) = M(fv)ϕm. But M(fv) : D/(DFn + DV n) → D/(DFn+1 + V n+1) is of
course x 7→ FV x = px, and πn+1M(fv) = πn+1p = πn.

The W (k)-linear map
M(D(G))→M(G)∗

is actually an isomorphism of Dk-modules.

In short, the autoduality G 7→ D(G) of Fiuk corresponds, via the Dieudonne functor, to the
autoduality M 7→M∗ in the category of Dk-module of finite length killed by a power of V and F .

Definition 3.6.9. Let now G ∈ Fimk (D(G) ∈ Feuk), we define the Dieudonne module M(G)

by
M(G) =M(D(G))∗

It follows from the Cartier duality between Fimk and Feuk that the functor G 7→ M(G) just
defined induces an antiequivalence between Fimk and the category of all Dk-modules of finite
length on which F is nilpotent and V is bijective.

Remark 3.6.10. We can describe M(G) as follows. Suppose first G is diagonalisable: G =

D(Γk). Then D(G) ∼= Γk, and M(D(G)) = lim→MorACuk
(Γk,Wnk) = lim→Hom(Γ,Wn(k)) =

Hom(Γ,W∞) = MorModW (k)(W (k)⊗Z Γ,W∞), hence

M(G) ∼=W (k)⊗Z Γ

In general, G is defined by a Galois module Γ and M(G) is the set of invariants under the Galois
group Π of M(G⊗k k̄); hence

M(G) ∼= (W (k̄ ⊗Z Γ))Π

Moreover, F and V are easily described by duality

F (λ⊗ χ) = λ(p)

V (λ⊗ χ) = λp
−1 ⊗ χ
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Proposition 3.6.11. Let Fpk be the category of all finite k-groups of p-torsion. Any G in Fpk

decomposes uniquely as H × K, with H ∈ Fiuk × Feuk, K ∈ Fimk and we define M(G) as
M(H)×M(K).

Theorem 3.6.12. (a) The functor G 7→M(G) is an antiequivalence between the category Fpk =

Fiuk×Feuk×Fimk of all finite k-groups of p-torsion, and the category of all triples (M,FM , VM )

where M is a finite length W (k)-module and FM and VM two group endomorphism of M such
that

Fm(λm) = λ(p)FM (m)

VM (λ(p)m) = λVM (m)

FMVM = VMFM = p · idM

(b) G is etale, infinitesimal, unipotent or multiplicative according as FM is isomorphic, FM

nilpotent, VM nilpotent, or VM isomorphic.

(c) For any G ∈ Fpk , one has rk(G) = plengthM(G).

(d) If K is a perfect extension of k, there exists a functorial isomorphism

M(G⊗k K) ∼=W (K)⊗W (k) M(G)

(e) There exists a functorial isomorphism

M(D(G)) =M(G)∗

3.7 Dieudonne modules (p-divisible groups)

Lemma 3.7.1. Let · · · → Mn+1
πn−→ Mn → · · · → M1 be a system of W (k)-modules with the

following properties.

(1) The sequence Mn+1
pn−→Mn+1

πn−→Mn → 0 is exact for all n.

(2) Mn is of finite length for all n.

Let M = lim←Mn. Then M is a finitely generated W (k)-module and the canonical map
M →Mn identifies Mn with M/pnM , for all n.

Proof. It follows from (1) that

Mn+m
pn−→Mn+m

π−→Mn → 0

is exact for all n and m (where π = πn ◦ πn+1 ◦ · · · ◦ πm−1). Taking the inverse limit over m, we
find an exact sequence

M
pn−→M

λn−→Mn → 0

(the lim← functor is exact for finite length modules) where λn is the canonical projection, hence
the last assertion. Let now m1, · · · ,mr be elements in M generating M/pM = M1; consider the
W (k)-module homomorphism ϕ : W (k)r → M such that ϕ(a1, · · · , ar) = a1m1 + · · · + armr. It
induces surjective maps W (k)r/pnW (k)r → M/pnM for all n hence is surjective as an inverse
limit of surjective maps of finite length modules. ■
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Definition 3.7.2. We say that a formal group G is of p-torsion if

(1) G =
∪
(KerpnidG).

(2) Ker(pidG) is finite.

We have exact sequence

0→ Ker(pn)→ Ker(pn+1)
pn−→ Ker(pn+1)

0→ Ker(pn)→ Ker(pm+n)
pn−→ Ker(pm)

the latter show by induction that Ker(pn) is finite for all n. Define M(G) = lim→M(Ker(pn)).

Theorem 3.7.3. G 7→ M(G) is an antiequivalence between the category of p-torsion formal
groups and the category of tuples (M,FM , VM ) where M is a finitely generated W (k)-module and
FM , VM two group endomorphisms of M with

FM (wm) = w(p)FM (m)

VM (w(p)m) = wVM (m)

FMVM = VMFM = pidM

Proof. It follows from the lemma that M(G) is finitely generated and that Mn
∼=M(G)/pnM(G).

Conversely, if M is as before, then we define G as lim→Gn where M(Gn) =M/pnM . ■

Remark 3.7.4. From the definitions and what was already proved follow immediately:

(1) G is finite if and only if M(G) is of finite length.

(2) G is p-divisible if and only if M(G) is torsion-free (= free), and

height (G) = dimM(G)

(3) For any perfect extension K/k, there is a functorial isomorphism

M(G⊗k K) ∼=W (K)⊗W (k) M(G)

(4) If G is p-divisible, with Serre dual G′, then

M(G′) = MorModW (k)(M(G),W (k))

with (FM(G′)f)(m) = f(VMm)(p), (VM(G′)f)(m) = f(FMm)(p
−1).

Indeed, let M(G) = M ; then M = lim←M/pnM , and M/pnM = M(Ker(pnidG)); but G′ is
defined as lim→D(Ker(pnidG)), hence

M(G′) = lim
←
M(D(Ker(pnidG)))

= lim
←

(M/pnM)∗

= lim
←

MorModW (k)(M/pnM,W (k)/pnW (k))

= MorModW (k)(M,W (k))
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3.8 Dieudonne modules (connected formal group of finite type)

Definition 3.8.1. By a similar discussion (replacing p by F ), we have the following results: if G
is a connected finite type formal group, define M(G) = lim←M(Ker(Fn

G)); it is a module over the
F -completion D̂k of Dk.

Theorem 3.8.2. G 7→ M(G) is an antiequivalence between the category of connected formal
groups of finite type and the category of finite types D̂k-modules M such that M/FM has finite
length. Moreover

(1) G is finite ⇐⇒ M(G) has finite length ⇐⇒ FnM(G) = 0 for n large.

(2)G is smooth ⇐⇒ F :M(G)→M(G) is injective; in that case, dim(G) = length(M(G)/F (M(G))).

4 Classification of p-divisible groups

Remark 4.0.1. k is a perfect field (unless otherwise stated), char (k) 6= 0; we denote by B(k)

the quotient field of W (k), and extend x 7→ x(p) in W (k) (resp. B(k)) is W (Fp) = Zp (resp.
B(Fp) = Qp).

4.1 Isogenies

Definition 4.1.1. A F -lattice (resp. F -space) over k is a free W (k)-module (resp. a B(k)-vector
space), of finite rank, together with an injective (resp. injective=bijective) group endomorphism
F such that F (λx) = λ(p)Fx. If M is a F -lattice, then M ⊗W (k) B(k) has a natural F -space
structure.

Proposition 4.1.2. To each p-divisible group G, we associate the F -lattice M(G), and the F -
space E(G) = B(k)⊗W (k)M(G); the functor G 7→M(G) is an antiequivalence between p-divisible
groups and those F -lattices M for which for which FM ⊇ pM .

Definition 4.1.3. If K is a perfect extension of k, and M a F -lattice over k, we define MK as
W (k)⊗W (k) M , similar for F -spaces.

Lemma 4.1.4. Let G and H be two p-divisible groups of the same height and f : G → H be a
homomorphism. The following conditions are equivalent:

(a) Ker(f) is finite,

(b) f is an epimorphism,

(c) M(f) :M(H)→M(G) is injective,

(d) CokerM(f) is finite,

(e) E(f) : E(H)→ E(G) is an isomorphism.

Such an f is called an isogeny.
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Proposition 4.1.5. Let G and H be two p-divisible groups. Then E(G) and E(H) are isomorphic
if and only if there exists an isogeny f : G→ H.

Two such groups are called isogenous. The classification of p-divisible groups isogeny is there-
fore equivalent to classification of F -spaces of the form E(G).

Proof. Let ϕ : E(H)→ E(G) be an isomorphism; there exists m such that ϕ(M(H)) ⊆ p−mM(G),
then pmϕ :M(H)→M(G) corresponds to an isogeny f . The converse is clear. ■

Definition 4.1.6. A F -space E is called effective if it contains a lattice (i.e. a W (k)-submodule
M such that E = B(k)⊗W (k) M) stale by F , i.e., if it comes from an F -lattice. It comes from a
p-divisible group if and only if it contains a lattice stable by F and pF−1.

4.2 The category of F -spaces

Proposition 4.2.1. This is a Qp-linear category: an Abelian category, such that Hom(E1, E2) has
a natural (finite dimension; in fact) Qp-vector space structure, the composite map (f, g) → g ◦ f
being Qp-bilinear (note that Qp is the center of B(k)).

It has tensor products and internal Hom: if E1, E2 are F -spaces, then E1⊗E2 and Hom(E1, E2)

are the usual ⊗ and Hom of B(k)-vector spaces and F (x⊗ y) = Fx⊗ Fy, (Fu)(x) = u(F−1x)(p),
x ∈ E1, y ∈ E2, u ∈ Hom(E1, E2).

We denote by □ the F -space (B(k), x 7→ x(p)), by □(n) the F -space (B(k), x 7→ p−nx(p)). The
dual Ě of E is Hom(E,□), the nth twist E(n) of E is E ⊗□(n).

We have the usual canonical isomorphisms

Hom(A,Hom(B,C)) = Hom(A⊗B,C)

Hom(□, A) = A

Hom(A,B) = Hom(□,Hom(A,B))

A⊗ (B ⊗ C) = (A⊗B)⊗ C

In particular
E(m)(n) = E(m+ n)

E(m) = Ě(−m)

If G is a p-divisible group and G′ its Serre dual, then

E(G′) = Hom(E(G),□(−1)) = E(G)(−1)

(because Serre duality sends F to V = pF−1).

These conditions commute with the base-extension functor E 7→ Ek = E ⊗B(k) B(K) (K/k a
perfect extension).

45 2023.9



REFERENCES

4.3 The F -spaces Eλ, λ ≥ 0

Definition 4.3.1. Let λ ≥ 0 be a rational number; write λ =
s

r
, with r, s ∈ N, r > 0, (r, s) = 1.

We define the F -lattice Mλ over Fp by

Mλ = Zp[T ]/(T
r − ps)

F acting by multiplication by T , and similarly, the F -space Eλ over Fp by

Eλ = Qp[T ]/(T
r − ps)

If 0 ≤ λ ≤ 1, then r ≥ s; define M̄λ = Zp[F ]/(F
r−s − V s), then M̄λ is a lattice in Eλ and a

Dieudonne module; actually, let Gλ be the p-divisible group over Fp defined by the exact sequence

0→ Gλ →W (p)
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