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Preface

Theorem 0.0.1. Let K be a number field. Let C/K be a smooth projective curve of genus ≥ 2.
Then the set C(K) of K-rational points is finite.

Remark 0.0.2. Clearly we can omit the words “smooth” and “projective” by taking the normal-
ization and the projective locus.
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Chapter 1

The method from Faltings

1.1 An overview

1.1.1 Tate conjecture for Abelian varieties over finite fields

In 1966, Tate proved the following two results: let k be a finite field, and ` a prime number
with ` 6= char (k), then

• for any two Abelian varieties A,B over k, the natural map

Z` ⊗Hom(A,B) → Hom(T`A, T`B)Gal(ks/k)

is an isomorphism. Here the right hand is the group of Z`-linear maps fixed by
Gal(ks/k).

• for any Abelian variety A over k the representation

ρ` : Gal(ks/k) → GL(V`A)

is semisimple.

Since we hope to obtain a more general result, we temporarily omit the assumption that k is
a finite field.

Preliminaries

We first list some properties for Abelian varieties, which can be found in van der Geer’s book
or Milne’s note:

Proposition 1.1.1. Let A and B be Abelian varieties over a field k.

If ` is a prime number, ` 6= char (k). Then the map

Z` ⊗Hom(A,B) → Hom(T`A, T`B)

is injective, and has a torsion-free cokernel.
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1.1. AN OVERVIEW

Proposition 1.1.2. Let A be an Abelian variety over a field k. Also, let ` be a prime number
with ` 6= char (k). For any Gal(k̄/k)-stable submodule W of finite index in T`A, then there is an
Abelian variety B and an isogeny u : B → A such that W is exactly the image of the induced map

T`u : T`B → T`A

Proposition 1.1.3 (Zarhin’s trick). Let A be an Abelian variety over a field k. Then A4× (AD)4

carries a principal polarization.

Proposition 1.1.4. Up to isomorphism, an Abelian varieties has only finitely many direct factors.

The proof

We first do some reductions.

Proposition 1.1.5. The map

T` : Z` ⊗Hom(A,B) → Hom(T`A, T`B)Gal(ks/k)

is an isomorphism if and only if the map

V` : Q` ⊗Hom(A,B) → Hom(V`A, V`B)Gal(ks/k)

is an is an isomorphism.

Proof. By 1.1.1 the map T` is injective and Coker(T`) is torsion-free (hence free). Then T` is an
isomorphism if and only if Coker(T`) is free of rank 0, and further equivalently Coker(T`)⊗Q` is
a 0th-dimensional vector space. Now the result follows from that Q` is flat over Z`. ■

Proposition 1.1.6. If C is an Abelian variety over k such that

Q` ⊗ End(C) → End(V`C)
Gal(ks/k)

is an isomorphism, then for any Abelian varieties A,B over k, the map

Q` ⊗Hom(A,B) → Hom(V`A, V`B)Gal(ks/k)

is an is an isomorphism.

Proof. Let C = A×B. Then, there are decompositions

Q` ⊗ End(C) = Q` ⊗ End(A)⊕Q` ⊗Hom(A,B)⊕Q` ⊗Hom(B,A)⊕Q` ⊗ End(B)

End(V`C)
G = End(V`A)

G ⊕Hom(V`A, V`B)G ⊕Hom(V`B, V`A)
G ⊕ End(V`B)G

where G = Gal(ks/k). The result then follows immediately. ■

Now we consider a “finiteness condition”, which is denoted by Fin(A/k): up to isomorphism
there are finitely may Abelian varieties B over k for which there is an isogeny A→ B of degree a
power of `.
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Lemma 1.1.7. Under the assumption Fin(A/k), for every sub-vector space W ⊆ V`A that is
stable under Gal(ks/k), there exists an element u ∈ Q` ⊗ End(A) such that W = u(V`A).

Proof. Let Wn = W ∩ T`A + `n · T`A. Then `n · T`A ⊆ Wn ⊆ T`A. Wn is then of finite index in
T`A, and by 1.1.2 it is the image of T`vn : T`An → T`A, where vn : An → A is an isogeny.

By the assumption Fin(A/k), there is a sub-sequence {ni} such that

An1
∼= An2

∼= · · ·

Fix an n ∈ {ni}, let wi be the composite

wi : A
v−1
n−−→ An

∼−→ Ani

vni−−→ A

Then wi is an element in Q` ⊗ End(A). Choose an element u ∈ Q` ⊗ End(A) be the limit of a
sub-sequence. Then u(V`A) = (lim vn(V`An))⊗Q` = Q` ⊗ limWn =W . ■

Now we return to the proof of Tate conjecture, in fact, we will prove a more general version.

Theorem 1.1.8. Let A be an Abelian variety over an arbitrary field k, and let ` be a prime
number different from char (k). Assume that 1.1.7 is true for A and A2, then the representation

ρ` : Gal(ks/k) → GL(V`A)

is semisimple and the map
Q` ⊗ End(A) → End(V`A)

Gal(ks/k)

is an isomorphism.

Proof. Suppose we have a Galois-stable subspace W ⊆ V`A. By 1.1.7, there exists an endomor-
phism u ∈ Q`⊗End(A), such that W is exactly the image of u : V`A→ V`A. We consider the right
ideal u · (Q` ⊗End(A)), since Q` ⊗End(A) is a semi-simple algebra, u ·Q` ⊗End(A) is generated
by an idempotent e. In addition, W = u(V`A) = e(V`A) and its complement is (1 − e)(V`A).
Obviously, (1− e)(V`A) is also Galois-stable, hence ρ` is semi-stable.

Let C be the centralizer of End(A)⊗Q` in End(V`A), let B be the centralizer of C. The double
centralizer theorem gives that B = End(A) ⊗ Q`. Choose an element α ∈ End(V`A)

Gal(ks/k), it
suffices to show that α ∈ B. Consider the graph of α

W ≜ {(x, ax)|x ∈ V`A}

this is a Galois-stable subspace of V`A × V`A, and then by 1.1.7 there exists an element u ∈

End(A×A)⊗Q` such thatW = u(V`(A×A)). For any c ∈ C, the matrix
Ç
c 0

0 c

å
∈ End(V`A×V`A)

commutes with End(A × A) ⊗ Q`, and in particular, with u. Then
Ç
c 0

0 c

å
W ⊆ W . This says

that, for any x ∈ V`A, (cx, cαx) ∈W . By the definition of the graph, α maps cx to cαx, and then
α commutes with c. Hence, α ∈ B. ■
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Proposition 1.1.9 (finiteness theorem). Now all we need is that the condition Fin(A/k) holds
when k is a finite field. Indeed, there is a stronger condition: there are only finitely many Abelian
varieties of the dimension g (up to isomorphism) over k.

Proof. By 1.1.3 and 1.1.4, it suffices to show that there are finitely many principal polarization
Abelian varieties over k. Note that they can be treated as the k-points of the stack Ag,d(k), this
is a stack of finite type over k, hence the k-points are finite. ■

1.1.2 An overview of the Faltings’ proof

Now let K be a number field. First we state the Mordell conjecture.

[Mor]. (The Mordell conjecture). If X is a projective and smooth curve over K of genus g ≥ 2,
then #X(K) is finite.

In 1968, Parshin proved that the Shafarevich conjecture implies the Mordell conjecture, which
we will discuss in the end of this note.

[Sha1]. (The Shafarevich conjecture for curves). There exists only finitely many (smooth,
projective) curves (up to isomorphism) defined over K of genus g and with good reduction outside
of S, where S is a finite set of places.

[Sha2]. (The Shafarevich conjecture for Abelian varieties). There exists only finitely many
Abelian varieties over K (up to isomorphism) of dimension g with good reduction outside S, and
with a polarization of degree d.

Remark 1.1.10. Note that by taking the Jacobians, [Sha2] implies [Sha1].

Indeed, [Sha2] remains true if we remove the polarized assumption.

Remark 1.1.11. For the concepts of reduction types, one can see this note.

Remark 1.1.12. Prop 4.1 in Conrad’s note tells us that to have semistable reduction is transitive
under isogeny.

As we shall discuss later, the Tate conjecture implies [Sha2].

[Ta1]. (Tate conjecture). For any Abelian variety A over K the representation

ρ` : GK → GL(V`A)

is semisimple, where GK is the absolute Galois group.

[Ta2]. For any two Abelian varieties A,B over K, the natural map

Z` ⊗Hom(A,B) → Hom(T`A, T`B)GK

is an isomorphism.

To prove this Tate conjecture, we will prove a slightly different finiteness condition.

The method is to construct the “heights” for Abelian varieties. In fact, there exists a moduli
space Ag of Abelian varieties of dimension g with an embedding Ag → PN by using a power of the
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Hodge bundle, and then there exists a “canonical” height inherited from the height of PN , which
is called the moduli-theoretic height

H : Ag(K) → R

For the height H, we have the following property:

[H1]. Let C be a constant. Then there are only finitely many isomorphism classes of polarized
Abelian varieties (A, λ) over K of dimension g, with λ degree d, having semistable reduction
everywhere and H(A, λ) ≤ C.

Remark 1.1.13. Although [H1] states for the Abelian varieties with semistable reduction, for a
general Abelian variety A, we can reach this point by a theorem from Grothendieck: A will have
semistable reduction after a finite extension L ⊇ K, the proof can be found in Conrad’s note.

If [H1] holds true, and if H changes “slightly” under the isogeous class of a fixed Abelian
variety A, then we may conclude that Fin(A/K) holds (here needs some arguments). However,
unfortunately, we have not found a way to describe H under an isogeny class. Faltings constructed
a new height h which has not much difference with H, but is bounded under isogenous.

[H2]. Let A be an Abelian variety over K having semistable reduction everywhere. Then h is
eventually constant in the sequence {An} (see the proof of 1.1.7).

[H3]. Let C be a constant. Then there are only finitely many isomorphism classes of polarized
Abelian varieties (A, λ) over K of dimension g, with λ degree d, having semistable reduction
everywhere and h(A, λ) ≤ C.

© f.p. (1800010614@pku.edu.cn) 7 2023.10
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1.2. THE PROOF OF [H1] AND [H3]

1.2 The proof of [H1] and [H3]

1.2.1 The classical theory of heights

We first introduce the theory of height functions, which is a reading note for Silverman’s paper.

Absolute values

Remark 1.2.1. We will use the following notations:

• K/Q, a number field.

• MK , the set of absolute values on K extending the usual absolute values on Q.

• ‖ · ‖ = | · |[Kv :Qv ]
v .

Height on projective space

Definition 1.2.2. Let P ∈ Pn(K). The height of P (relative to K) is defined by the formula

HK(P ) =
∏

v∈MK

max{‖x0‖v, · · · , ‖xn‖v}

Proposition 1.2.3. For a finite extension L/K, we have the formula

HL(P ) = HK(P )[L:K]

Proposition 1.2.4. For all points P , HK(P ) ≥ 1, as we can choose homogeneous coordinates for
P with xi = 1 for some i.

Definition 1.2.5. Let P ∈ Pn(Q̄). The absolute height of P is defined by

H(P ) = HK(P )1/[K:Q]

where K is any number field with P ∈ Pn(K). Let h(P ) = logH(K).

Example 1. If P ∈ Pn(Q). Let [x0, · · · , xn] be a homogeneous coordinate such that xi ∈ Z for
all i and gcd(x0, · · · , xn) = 1. Then for finite prime p, max{‖x0‖p, · · · , ‖xn‖p} = 1, hence

H(P ) = max{|x0|, · · · , |xn|}

Theorem 1.2.6 (Finiteness theorem). Let C and d be constant. Then

{P ∈ Pn(Q̄) : H(P ) ≤ C, [Q(P ) : Q] ≤ d}

is a finite set.

Proof. From the above example, the theorem is clear for P ∈ Pn(Q).

In general, choose homogeneous coordinates P = [x0, · · · , xn] with some xi = 1. Then

H([x0, · · · , xn]) ≥ H([1, xi])

© f.p. (1800010614@pku.edu.cn) 9 2023.10
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1.2. THE PROOF OF [H1] AND [H3]

so we reduce to the case P = [1, x] and [Q(x) : Q] = d.

Let x(1), · · · , x(d) be the conjugates of x over Q, and 1 = s0, · · · , sd be the elementary symmetric
polynomials. Then x is a root of the polynomial

F (T ) =
∏

(T − x(i)) =
d∑

j=0

(−1)jsiT
d−j

Note that |sj |v ≤ Cj
d|x|v < d!|x|v, we have

H([s0, · · · , sd]) =
∏

v∈Mk(x)

max
i

{‖si‖
1

[Q(x):Q]
v }

=
∏

v∈Mk(x)

max
i

{|si|
[Q(x)v :Qv ]
[Q(x):Q]

v }

=
∏
|x|v≤1

max
i

{|si|
[Q(x)v :Qv ]
[Q(x):Q]

v } ·
∏
|x|v>1

max
i

{|si|
[Q(x)v :Qv ]
[Q(x):Q]

v }

<
∏
|x|v≤1

(d!)
[Q(x)v :Qv ]
[Q(x):Q] ·

∏
|x|v>1

Ñ
(d!)

[Q(x)v :Qv ]
[Q(x):Q] · |x|

[Q(x)v :Qv ]
[Q(x):Q]

v

é
Ä∑

[Q(x)v : Qv] = [K(x) : Q]
ä
= d! ·

∏
|x|>1

|x|
[Q(x)v :Qv ]
[Q(x):Q]

v

≤ d! · C

Then the choices of [s0, · · · , sd] is finite. Hence the choices of x is finite. ■

Heights on projective varieties

Definition 1.2.7. Let V be a smooth projective variety over Q̄. Let F : V → Pn be a morphism.
The (logarithmic) height on V relative to F is defined by

hF : V → R, hF (P ) = h(F (P )) = logH(F (P ))

Theorem 1.2.8. Let L be a sheaf without base-points on V , that is, L is generated by global
section. Let F : V → Pn and G : V → Pn be two morphisms of V which are associated to L
(depending on the generators). Then

hF = hG +O(1)

that is, |hF (P )− hG(P )| is bounded as P ranges over V .

Proof. ■

Definition 1.2.9. The group of functions mod O(1) on V , denoted by H(V ), is defined by

H(V ) = {functions h : V → R}/{bounded functions}

© f.p. (1800010614@pku.edu.cn) 10 2023.10
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Definition 1.2.10. Let L be a sheaf generated by global sections. The height function associated
to L is the class function hL ∈ H(V ) obtained by taking the height function hF for any morphism
F associated to L.

Proposition 1.2.11. Let L and M be sheaves generated by global section. Then

hL⊗M = hL + hM +O(1)

Proof. Let F = [f0, · · · , fn] and G = [g0, · · · , gm] be morphisms associated to L and M respec-
tively. Then

[· · · , figj , · · · ] : V → Pnm+n+m

is associated with L ⊗M. Now the result follows from that

max{· · · , ‖figj‖v, · · · } = max{· · · , ‖fi‖i, · · · } ·max{· · · , ‖gj‖v, · · · }

■

Now we generalize the definition of heights to all invertible sheaves.

Definition 1.2.12. Let L ∈ Pic(V ) be any invertible sheaf. Choose sheaves L1 and L2 which are
generated by global section such that L = L1⊗L−12 . Then the height function on V associated to
L is the function defined by

hL = hL1 − hL2 ∈ H(V )

Theorem 1.2.13 (Height machine). (a) There exists a unique homomorphism

Pic(V ) → H(V ), L 7→ hL

(b) If f : V →W is a morphism of smooth varieties, and L is an invertible sheaf on W , then

hf∗L = hL ◦ f +O(1)

Corollary 1.2.14 (Finiteness). If L is an ample sheaf on V , then for all constants C and d, the
set

{P ∈ V (Q̄) : hL ≤ C, [Q(P ) : Q] ≤ d}

is finite.

Note that for invertible sheaves L generated by global sections we already have hL(P )+O(1) =

logH(FL(P )) ≥ 1.

Proposition 1.2.15 (Positivity). For any invertible sheaf L on V with base locus B is not all
of V , then there is a rational map F : V → Pn associated to L which is a morphism on the
complement of B. Then

hL(P ) ≥ O(1) ∀P /∈ B

© f.p. (1800010614@pku.edu.cn) 11 2023.10
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Proof. Let Z be the corresponding divisor with B, then Z is a positive divisor contained in C,
where C is the corresponding divisor of L.

Let X and Y be very ample positive divisors such that Z ∼ Y − X. Let {f0, · · · , fn} be a
basis for L(X). Since Z is positive, we can extend this basis to a basis

{f0, · · · , fn, g1, · · · , gm}

of L(Y ). Let f and g be the corresponding associated with X and Y , as well as the base above,
then

hg(P ) ≥ hf (P )

this proves the proposition. ■

Proposition 1.2.16 (quasi-equivalence). Let L and M be algebraically equivalent sheaves on V ,
and assume that L is ample. Then for all ε > 0,

(1− ε)hL −O(1) ≤ hM ≤ (1 + ε)hL +O(1)

Heights on Abelian varieties

Theorem 1.2.17. By the cube theorem, let A/Q̄ be an Abelian variety, and let L be an invertible
sheaf on A. Then for all P,Q,R ∈ A,

hL(P +Q+R)− hL(P +Q)− hL(P +R)− hL(Q+R) + hL(P ) + hL(Q) + hL(R) = O(1)

The constant O(1) only depends on A and L.

Corollary 1.2.18. (a) Let n be an integer, and let [n] : A → A be the multiplication-by-n map.
Then

hL ◦ [n] =
n2 + n

2
hL +

n2 − n

2
hL ◦ [−1] +O(1)

(b) Taking R = −Q, we have

hL(P +Q) + hL(P −Q) = 2hL(P ) + hL(Q) + hL(−Q) +O(1)

by (a), if hL is even, then

hL(P +Q) + hL(P −Q) = 2hL(P ) + 2hL(Q) +O(1)

if hL is odd, then h is linear (modulo O(1))

hL(P +Q) = hL(P ) + hL(Q) +O(1)

Theorem 1.2.19. Let A/Q̄ be an Abelian variety, and let L be an invertible sheaf on A.

(a) There is a unique function
ĥL : A→ R

with the following

© f.p. (1800010614@pku.edu.cn) 12 2023.10
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(i) ĥL is a quadratic function (i.e. the map

〈·, ·〉 : A×A→ R

〈P,Q〉 = ĥL(P +Q)− ĥL(P )− ĥL(Q)

is bilinear).

(ii) ĥL = hL +O(1) on A.

(b) Assume that L is ample and symmetric. Then

(i) ĥL(P ) ≥ 0.

(ii) ĥL(P ) = 0 if and only if P is a point of finite order.

(iii) More generally, ĥL is a positive definite quadratic form on A(Q̄)⊗ R.

The proof of [H1]

We will use the Siegel modular variety Ag,d, and the fact that it has a canonical morphism
Ag,d → PN . In Milne’s note, Ag,d(K) maps to an algebraic variety bijectively when K is alge-
braically closed.

From 1.2.6, we know that there are finitely many (A, λ) such that H(A, λ) ≤ C. However,
job’s not finished. Two pairs (A, λ) and (B, λ′) send to the same point if and only if they are
Q̄-isomorphic, but this does not mean that they are K-isomorphic. Hence, all we need is the
following lemma:

Lemma 1.2.20. Let (A0, λ0) be a fixed polarized Abelian variety overK with semistable reduction
everywhere, then, up to K-isomorphism, there are finitely many Abelian varieties (A, λ) with
semistable reduction everywhere such that (A, λ) ∼= (A0, λ0) after base change to Q̄.

Proof. Let Σ be the set of pairs (A, λ) satisfying (A, λ) ∼= (A0, λ0) over Q̄.

Let S be the set of primes of K at which A0 has bad reduction. Then S is also the set at
which A has bad reduction for all A ∈ Σ.

Fix a number ` ≥ 3 which is a power of a prime number. Let L = K(A[`]), this is a finite
extension of K with degree ≤ #(GL2g(Z/`Z)), and is unramified outside S and {v : v|`}. Then
the discriminant D(L/K) =

∏
(Lw/Kv) is bounded. By Hermite theorem there are finitely many

extensions L/K. Hence, there exists a finite field extension L/K such that L contains all `-torsion
points in A for all A ∈ Σ.

We claim (A, λ) must be isomorphic to (A0, λ0) over L. Let α : (A, λ) → (A0, λ0) be an
isomorphism over Q̄. Then for any σ ∈ Gal(Q̄/L), σ ◦α◦σ−1 ◦α−1 is an automorphism of (A0, λ0)

fixed `-torsion points. Then by 1.1.1 it must be identity on A0. Hence we reduce the field Q̄ to L.

Now given an isomorphism α : (A, λ) → (A0, λ0) over L, we know that ασ = σ◦α◦σ−1 ◦α−1 =
(σα) ◦ α−1 is an automorphism of ((A0)L, (λ0)L). Hence we obtain a crossed homomorphism
Gal(L/K) → Aut((A0)L, (λ0)L). Then there is a map sending α : AL → (A0)L to an element in

H1(Gal(L/K),Aut(AL, λL))

© f.p. (1800010614@pku.edu.cn) 13 2023.10

https://www.jmilne.org/math/CourseNotes/AV.pdf


1.2. THE PROOF OF [H1] AND [H3]

If α1 and α2 map to the same element, that is, there exists β ∈ Aut(AL, λL) such that

(α1)σ = (σβ) ◦ (α2)σ ◦ (σβ)

(Note that this is non-Abelian group cohomology and the multiplication for Aut(AL, λL) here can
be treated as f · g = g ◦ f) and then we obtain an isomorphism (A1)L → (A2)L which is invariant
under the composite with σ ∈ Gal(L/K), hence is an K-isomorphism. Therefore, we obtain an
injective map (in fact it is bijective)

{(A, λ) : (A, λ) is isomorphic to (A0, λ0) over L}/K-isomorphism → H1(Gal(L/K),Aut(AL, λL))

Then Σ is finite. ■

Remark 1.2.21. The reduction to a finite extension L can be generalized, see van der Geer’s book
(12.13).

The last part is an example of Galois descent, see Poonen’s book section 4.5.

1.2.2 Heights and metrized line bundles

Metrized line bundles on Spec(R)

Remark 1.2.22. Let R be the ring of integers of K. Then a line bundle L on SpecR corresponds
to a projective R-module of rank 1. (If further R is a PID, then L is a free module).

Definition 1.2.23. A metrized line bundle on Spec(R) is a pair (L, | · |), where L is a line bundle
on SpecR, and for each archimedean absolute value v ∈ M∞K , | · |v is a v-adic norm (metric) on
the one-dimensional Kv vector space L ⊗R Kv.

The degree of a metrized line bundle (L, | · |) is defined as

deg(L, | · |) = log#(L/Rt)−
∑

v∈M∞
K

log ‖t‖v

where we choose t ∈ L with t 6= 0.

Example 2. If R is a PID, then we can choose t such that L = Rt. Then deg(L, | · |) =

−
∑

v∈M∞
K

log ‖t‖v.

Remark 1.2.24. For v a finite place, L ⊗ OKv is free from this useful result, if we choose a
generator lv, then we may define ‖a · lv‖v = ‖a‖v for a · lv ∈ L ⊗ Kv. By Chinese remainder
theorem

#(L/Rt) = #

Ñ ∏
v finite

L ⊗Rv/Rvt

é
=

∏
v finite

#(L ⊗Rv/Rvt)

Suppose t = a · lv for a ∈ Kv, then

#(L ⊗Rv/Rvt) = #(OKv/(a)) = ‖a‖−1v = ‖t‖−1v

Then
deg(L, | · |) = −

∑
v∈MK

log ‖t‖v

© f.p. (1800010614@pku.edu.cn) 14 2023.10

https://en.wikipedia.org/wiki/Group_cohomology#Non-abelian_group_cohomology
http://van-der-geer.nl/~gerard/AV.pdf
http://van-der-geer.nl/~gerard/AV.pdf
https://math.mit.edu/~poonen/papers/Qpoints.pdf
https://stacks.math.columbia.edu/tag/058Z


1.2. THE PROOF OF [H1] AND [H3]

Example 3. Let A/K be an Abelian variety, and N(A)/OK be the Neron model. Then we get
the Hodge bundle ωA = e∗(Ωg

N(A)/OK
) over Spec(OK). For any infinite place K ↪→ C, consider

the hermitian metric on ωA ⊗K C defined by

|α|2 = 1

2g

∫
A(C)

|α ∧ ᾱ|

If N(A) is semi-Abelian, we set the Faltings height h to be h(A) = 1

[K : Q]
deg(ωA).

Metrized line bundles on varieties

Remark 1.2.25. Let V/K be a projective variety. For any line bundle L, the stalk LP is an
one-dimensional k(P ) vector space.

Definition 1.2.26. Let v ∈ MK . A v-adic metric on L consisting of a (non-trivial) v-adic norm
| · |v on each fiber LP ⊗Kv such that the norms ”vary continuously with P ∈ V (Kv)”. (That is,
if f ∈ H0(U,L) is a section on some open set U , and if U(Kv) is given the v-adic topology, then
the map

U(Kv) → [0,∞), P 7→ |fP |v

is continuous.)

Lemma 1.2.27. Let v ∈M∞K , and suppose that | · |v and | · |′v are two v-adic metrics on L. Then
there exist constants c1, c2 > 0 such that

c1| · |v ≤ | · |′v ≤ c2| · |v

Proof. For each P ∈ V (Kv), choose some fP ∈ LP with fP 6= 0. Then |fP |v/|fP |′v is independent
the choice of fP , since LP is 1-dimensional over k(P ). Hence we obtain a well-defined map

F : V (Kv) → (0,∞), P 7→ |fP |v/|fP |′v

But F is continuous, and since V is projective, V (Kv) is compact. Therefore, there exist constants
c1, c2 such that c1 ≤ F (P ) ≤ c2 for all P ∈ V (Kv). ■

Proposition 1.2.28. Assume that L is very ample, and fix an embedding V ⊆ Pn
K corresponding

to L. Any point P ∈ V (K) extends to a point P : Spec(R) → Pn
Z. Hence if we are given v-adic

metrics on O(1) for each v ∈ M∞K , then by pull-back P ∗O(1) becomes a metrized line bundle on
Spec(R). Also,

degP ∗O(1) = [K : Q]h`(P ) +O(1)

Distance functions and logarithmic singularities

Definition 1.2.29. Let X be a closed subset of V and U its complement. Let v ∈ M∞K . A
logarithmic distance function for X is a map:

dX : U(K̄v) → [0,∞)
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with the property that if f1 = · · · = fr = 0 are local equations for X, that is, X is defined by
these equations, then

|dX(P )− log+ min
1≤j≤r

{|fj(P )|−1v }|

extends to a bounded function on any open subset of V (K̄v) on which the fj are regular.

Proposition 1.2.30. Let L be an ample line bundle on V/K. Then there exists a constant c > 0

such that
hL(P ) > cdX(P ) +O(1), P ∈ U(K)

Definition 1.2.31. Let V,X,U be as above, let L be a line bundle on V , and let | · |′v be a v-adic
metric on the restriction L|U . We say that | · |′v has logarithmic singularities along X if for any
v-adic metric | · |v defined on all of L, there are constants c1, c2 > 0 such that

max{| · |v/| · |′v, | · |′v/| · |v} ≤ c1(dX + 1)c2 on U(K̄v)

If (L|U , | · |′) is a metrized line bundle, then we say that it has logarithmic singularities along X if
| · |′v has logarithmic singularities along X for each v ∈M∞K .

Theorem 1.2.32 (Faltings). With the same hypothesis, assume that L is very ample. Then

{x ∈ U(K)|hL,|·|′v < C}

is finite.

Proof. ■

Now we can prove [H3].

By Gabber’s lemma, there is a diagram

Au Au

Ag Ag

Ag A∗g

π

e e

where Au is the universal Abelian variety (see this note), A∗g is the minimal compactification,
Ag is the toroidal compactification. The Hodge bundle ωAg and ωAg

are defined by e∗(Ωg
Au/Ag

)

and e∗(Ωg

Au/Ag
). The two compactifications are compatible:

π∗O(1) ∼= ωAg

We use the following fact, (O(1)|Ag , | · |canAg
) has log singularities along A∗g\Ag. Then

{x ∈ Ag(K)|hωAg ,|·|′v < C}

is finite.
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1.3. THE PROOF FOR TATE CONJECTURE OVER NUMBER FIELDS

1.3 The proof for Tate conjecture over number fields

1.3.1 An overview

We shall prove the following theorem, which is a restatement of [H2], in the following section.

Theorem 1.3.1. Let B ⊆ A[`∞] be an `-adic group, and denote Bn = B[`n] and An = A/Bn. If
A is semistable everywhere, then h(An) is eventually constant as a function of n.

Like section 1.1, the following result will be important, which we will discuss in the last section:

Proposition 1.3.2. If A is an Abelian variety over a number field K, and W ⊆ V`(A) is a
sub-representation, then there exists u ∈ End(A)⊗Q` such that u(V`A) =W .

1.1.8 actually gives us how to prove Tate conjecture from 1.3.2.

1.3.2 Under isogeny

Proposition 1.3.3. Let φ : A→ B be an isogeny of varieties over Spec(K) which are semistable
everywhere. Then there exists a homomorphism of their Neron models ϕ : N(A) → N(B) over
Spec(OK). Let G = Ker(ϕ), and assume that s : Spec(OK) → G is the identity section of G.
Then

h(A)− h(B) =
1

[K : Q]
log(|s∗Ω1

G/OK
|)− 1

2
log(deg(φ))

Proof. Recall the definition of faltings’ height h: choose ω ∈ Γ(A,Ωg
A/K). LetM = Γ(N(A),ΩN(A)/OK

),
then

h(A) =
1

[K : Q]

(
log |M/OK · ω| −

∑
i:K↪→C

1

2
log

∫
A(C)

ω ∧ ω̄

)

See this site, and by the structure theorem for the finitely generated modules, we may assume
that M = Γ(N(A),Ωg

N(A)/OK
) and N = Γ(N(B),Ωg

N(B)/OK
) are free, since otherwise we may take

an extension of K.

Now let w and w′ be generators of M and N respectively. Also, we assume that φ∗w′ = aw,
where a ∈ OK . Consider A(C) = Cg/Λ1 and B(C) = Cg/Λ2, φ induces Λ1 ⊆ Λ2 with index
deg(φ). Then∫

B(C)
ω′ ∧ ω̄′ = deg(φ)−1

∫
A(C)

ω′ ∧ ω̄′B = deg(φ)−1
∫
A(C)

‖a‖iω ∧ ω̄ =
i(a)i(a)

deg(φ)

∫
A(C)

ω ∧ ω̄

Therefore,

h(A)−h(B) =
1

2[K : Q]

∑
i:K↪→C

(
log(|i(a)|2)− log(deg(φ))

)
= −1

2
log(deg(φ))+

1

[K : Q]
log |NN/Q(a)|

It remains to show that
|s∗Ω1

G/OK
| = |NK/Q(a)|

First, there is a fiber square
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1.3. THE PROOF FOR TATE CONJECTURE OVER NUMBER FIELDS

G N(A)

Spec(OK) N(B)

ϕ

Then |s∗Ω1
N(A)/N(B)| = |s∗Ω1

G/OK
|.

Consider the exact sequence

ϕ∗(Ω1
N(B)/OK

) → Ω1
N(A)/OK

→ Ω1
N(A)/N(B) → 0

of sheaves on N(A). Pulling back via s, we have a short exact sequence

s∗(Ω1
N(B)/OK

)
ϕ∗
−→ s∗Ω1

N(A)/OK
→ s∗Ω1

N(A)/N(B) → 0

Note that det(ϕ∗) = a by taking wedge product. Then

|Coker(ϕ∗)| = |Coker(det(ϕ∗))| = |OK/aOK | = |NK/Q(a)|

■

Our next goal is to study |s∗Ω1
G/OK

|.

Note that G is a quasi-finite separated flat group scheme.

We first prove a lemma for finite group schemes:

Lemma 1.3.4. A finite group scheme G over a field k is etale if and only if its order is invertible
in k. In particular if char (k) = 0, any finite group scheme is etale over k.

Proof. Note that G is a spectrum of Artin ring over k.

If k has characteristic 0, by the general version for Cartier’s theorem, G is reduced, in particular,
G×k k

al. Then every Artin local component is exactly Speckal. Hence, G is etale.

For other cases, suppose G is connected, then G is a spectrum of a local Artin ring A and
there is an isomorphism

A⊗k k
al ∼= kal[x1, · · · , xn]/(xp

e1

1 , · · · , xpenn )

for ei ≥ 1 with the maximal ideal (xp1, · · · , x
p
n). The order of G is then defined by the rank of

k-space A, also by the kal-rank of A⊗k k
al, which is max{pei−1}. Then for general G with order

prime to p, G0 ⊗k k
al is trivial, then G is etale. ■

Corollary 1.3.5. If G is a quasi-finite separated flat group scheme over a base S. Assume the
fibers of G have orders which are divisible on the base S. Then G is etale over S.

Corollary 1.3.6. Let G be a quasi-finite separated group scheme killed by a power of ` over
SpecOK . For each place v above `, let Ov be the completion at v and let Gv = G⊗OK

Ov. Then,

|s∗(Ω1
G/OK

)| =
∏
v

|s∗(Ω1
Gv/Ov

)|
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1.3. THE PROOF FOR TATE CONJECTURE OVER NUMBER FIELDS

Proof. Let M = s∗(Ω1
G/OK

), it is a finite OK-module. By 1.3.5, Mv 6= 0 holds only for v|`. Then
|M | =

∏
v|` |Mv|. ■

Now we discuss s∗Ω1
Gv/Ov

. We will use the structure theorem for quasi-finite morphism (which
is a corollary of Zariski’s main theorem, one can see lemma 8.1 in this note).

Proposition 1.3.7. Let G be a quasi-finite separated flat group scheme killed by a power of ` over
a complete discrete valuation ring R with finite residue field. Then G has a canonical subgroup
scheme G0

f which is finite flat and connected over R such that

|s∗(Ω1
G/R)| = |R/disc(G0)|

1
#G0

f

Proof. By the structure theorem for quasi-finite morphism, G = Gf
⨿
Gη, and Gη has no special

fiber. Since Spec(R) is connected, and Spec(R)
s−→ G→ Spec(R) is identity, s factors through Gf .

Hence
s∗(Ω1

G/R)
∼= s∗(Ω1

Gf/R
)

Let G0
f be the connected component, then similarly

s∗(Ω1
Gf/R

) ∼= s∗(Ω1
G0

f/R
)

Let H = G0
f . Write H = SpecA, then A is a local ring free of rank #H over R. Let

I = Ker(A → R). Note that I/I2 = s∗(Ω1
H/R) (the second exact sequence for the differential

sheaf). In van der Geer’s book Prop 3.15, the pull back of s∗Ω1
G/R under the structure morphism

G→ R is isomorphic to Ω1
G/R. In other words, I/I2 ⊗R A ∼= Ω1

A/R. Thus

|Ω1
A/R| = |s∗(Ω1

H/R)|
#H

The ring extension R → A is monogenic, that is, A is generated by an element α with a minimal
polynomial f . Hence, Ω1

A/R is an A-module generated by dα, this is annihilated by f ′(α) since
d(f(α)) = 0. Note that the different ideal δA/R is generated by f ′(α), then Ω1

A/R is free of rank 1
over A/δA/R. Suppose δA/R = Pn, P ∩ R = p. Let e, f be the ramification and inertial degrees.
Then discA/R = pfn. In addition,

|R/disc| = |R/p|fn = |A/P|n = |A/δA/R|

We complete the proof. ■

With the same hypothesis in 1.3.1, let Gn be the kernel of N(A) → N(An). Following the
argument above, it suffices to consider (Gn ⊗OK

Ov)f , which will be denoted by Gf
n,v. Obviously,

there are inclusions in,v : Gn,v → Gn+1,v. We want to use the result from Tate. But, it is not true
that Gn,v forms an `-adic group over R. Fortunately, we have the following lemme which says that
it will eventually be an `-divisible group.

Lemma 1.3.8. For a large N , the systems

Hn,v = Gf
N+n,v/G

f
N,v

form an `-divisible groups over Ov for all places v|`.
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Proof. We drop the index v.

Note that there are natural morphisms

` : A/Bn+1 → A/Bn

which induce
` : Hn+1 → Hn

The system {Hn, in} is an `-divisible group if it has the right order in the definition and the
induced maps

` : Hn+1/Hn → Hn/Hn−1

is an isomorphism.

The order can be checked on the generic fiber. Since Gf
n = G∩N(A)[`n]f , the generic fiber of

{Gf
n} is just B ∩A[`∞]f , which is obviously an `-divisible. Hence the order is suitable.

The natural maps ` : Hn+1/Hn → Hn/Hn−1 are surjective, and hence will be eventually
isomorphism by considering the order. ■

Tate’s result says that disc(G0
n,v) = `dvn`

hvn
= `dvn|G

0
n,v |, where dv = dim lim→{G0

n,v}.

Thus by computing we find that h(A) = h(An) holds if and only if

1

2
h[K : Q] =

∑
v|`

[Kv : Q`]dv

where h is the height of B/K.

We consider the absolute Galois group GQ and the GQ-modules W = V`(B) ⊆ V`(A). Define
V = Ind

GQ
GK

(W ). This is an h[K : Q]-dimensional representation of GQ.

GKv → GK ⟳ V`(G) =W

GQℓ
→ GQ ⟳ Ind

GQ
GK

(W ) = V

Note that V is of dimension [K : Q]h.

Lemma 1.3.9. ResGQℓ
V =

⊕
v|` Ind

GQℓ
GKv

(
ResGKv

W
)
.

Proof. This is a result in the general representation theory.

Consider the coset S
GQℓ

\GQ/GK

The right part GQ/GK can be identified as the inclusions K ↪→ Q̄. Fix a j : Q̄ → Q`. Then it can
be identified as K ↪→ Q`. Through the embeddings K ↪→ Kv, it is divided to parts Kv ↪→ Q` for
any v|`. Then S can be identified as the set of v such that v|`.

By the Res-Ind formular

ResGQℓ
(V ) ∼=

⊕
s∈S

Ind
GQℓ

sGKs−1∩GQℓ

(Ws) ∼=
⊕
v|`

Ind
GQℓ
GKv

(ResGKv
W )

■
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Then we have
ResGQℓ

det(V ) =
⊗
v|`

det(Ind
GQℓ
GKv

ResGKv
(W ))

Theorem 1.3.10. The representation det
(
ResGKv

(W )
)

for any v|` is Hodge-Tate of weight dv.

Proof. Basic property in p-adic Hodge theory. ■

Recall the Hodge-Tate decomposition of p-divisible groups.

Theorem 1.3.11. Let G be an `-divisible group over OKv . Then T`(G) has Hodge-Tate weights
0 and 1 with the multiplicities given by

h0 = d, h1 = d′

where d = dim(G) and d′ = dim(GD).

Let t(V ) =
∑
ihi for Hodge-Tate representation V with weight hi. Then

t(ResGQℓ
det(V )) =

∑
v|`

t
(
det(Ind

GQℓ
GKv

ResGKv
(W ))

)
=
∑
v|`

[Kv : Q`]t(ResGKv
(W ))

=
∑
v|`

[Kv : Q`]dv

Proposition 1.3.12. Let V ′ = ResGQℓ
det(V ). The unique weight of V ′ is equal to 1

2
hm.

Proof. By 1.3.10, V ′ has weight d = dimB.

By this note Prop 1.1.1 and Ex 2.2.10, every character over GQℓ
can be written as µλ · µawb,

and if it is Hodge-Tate, then a is the weight. Let Frobp be an Frobenius element for an unramified
place p. Then Frobp is sent to λ ·pa ·wb. Since wp−1 = 1, it is a root of unity. The Weil conjecture
for Abelian varieties implies that the eigenvalues of Frobp has absolute value p1/2, hence, by taking
the det, Frobp is sent to a number with absolute value ph[K:Q]/2. Then

h[K : Q]

2
= a = d

■

1.3.3 Proof for 1.3.2

I. If A has a polarization with semistable reduction everywhere.

The proof is same with 1.1.7.

Let U =W∩T`A. Then {U/`nU} forms an `-divisible subgroup G ⊆ A[`∞]. Let An = A/G[`n].
Then we have natural isogeny πn : A → An. Also, like the proof in 1.1.7, there are morphisms
fn : An → A sending T`An to Wn = U+`nT`A. The relation for πn and fn is given by πn◦fn = [`n].
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In order to use [H3] and 1.3.1 to conclude that there is an isomorphic sequence

An1

∼−→ Ani

for n1 < n2 < · · · , we must equipped An with a polarization of degree d2. To do this, we may first
assume that W is a maximal isotropic subspace for βθ, which is the Weil pairing corresponding
to the polarization θ : A → AD. Consider the pullback f∗nθ, this is a polarization, but with an
unexpected degree. We now use the isotropicity of W . Consider

βf∗
nθ : T`(An)× T`(An) → Z`(1) = lim

←
µ`m

This is defined by
βf∗

nθ(x, y) = βθ(fnx, fny)

Hence, the image of βf∗
nθ is a subset of βθ(Wn,Wn), which is equal to βθ(`nT`A,Wn)+βθ(W, `

nT`Wn)

by the bilinearity. Thus, Im(βf∗θ) ⊆ `nZ`(1). Then

enf∗
nθ

: An[`
n]×An[`

n] → µ`n

is trivial. Since the corresponding pairing

e : An[`
n]×AD

n [`
n] → µ`n

is non-degenerate, for any y ∈ An[`
n], f∗nθ maps y to 0 ∈ AD

n . Hence, f∗nθ factors as g ◦ [n]X , where
g is a polarization with degree d2. Thus we equip An with a polarization with degree d2.

Define ui : A→ An1

∼−→ Ani → A, and let u be the limit, we obtain what we want.

For general W ⊆ V`X, let α ∈ Q` be the square root of −1. Consider

W ′ = {(x, αx)|x ∈W}+ {(y,−αy)|y ∈WD} ⊆ V`(A
2)

This is a 2g-dimensional isotropic subspace of θ × θ obviously. Let u ∈ Q` ⊗ End(A2) be the
endomorphism such that u(V`A2) =W ′. Then the image of

(p1 − αp2) ◦ u : V`(A
2) → V`(A

2) → V`A

is 2W =W , where pi is the projection. By composing the natural maps

i1, i2 : V`A→ V`(A)⊕ V`(A) = V`(A
2)

we obtain two elements u1, u2 ∈ Q` ⊗End(A) such that (u1 + u2)(V`A) =W . The set of elements
u such that uV`A ⊆ W forms a right ideal of Q` ⊗ End(A). This ideal is principal generated by
an idempotent element u′. This is what we want.

II. If A does not have semistable reduction.

We will show that if 1.3.2 holds for A×K L, then it holds for A, where L is a finite extension
of K. Then we can use 1.1.13.

SinceW ⊆ V`A isGK-invariant, then there exists u ∈ EndL(AL)⊗ZQ` such that u(V`(A)) =W .
Let

u′ =
1

[L : K]

∑
σ∈GK/GL

σ(u) ∈ End(A)⊗Q`
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Then u′(V`A) =W .

III. If A does not have polarizations.

One method is to prove that [H3] holds without assuming the polarized conditions.

We can obtain this result by showing h(A) = h(AD) for A with semistable reduction every-
where. After this, h((A×AD)4) = 8h(A), and then [H3] holds for general A.

Another method is that we can just prove 1.3.2 for polarized Abelian varieties. By Zarhin’s
trick C = A4× (AD)4 is polarized, and then C and C2 both satisfy 1.3.2. Then for C we can show
the result 1.1.8.

For general Abelian variety A, the semi-simplicity follows immediately from V`(A) is a sub-
representation of V`(C). Also note that 1.1.6 shows a bi-product that if

Q` ⊗ End(C) → End(V`C)
Gal(ks/k)

holds for C = A4× (AD)4, then it holds for A by taking B = A3× (AD)4. We complete the proof.

Corollary 1.3.13. For any Abelian varieties A1, A2 over K, A1 ∼K A2 if and only if

T`(A1)⊗Zℓ
Q`

∼= T`(A2)⊗Zℓ
Q`

as GK-modules for some `, or equivalently, for any g ∈ G, the traces are same

tr(g ⟳ V`(A1)) = tr(g ⟳ V`(A2))

Proof. If A1, A2 are isogeny the result is obvious.

Conversely, suppose this Galois-equivalent isomorphism is given by

h : V`A1
∼−→ V`A2

First, this isomorphism gives that dim(A1) = dim(A2). Since they are finitely dimensional Q`-
vector spaces, we may find an integer n such that `nh maps the Z`-lattice T`A1 into T`A2. We
may assume that n = 0. Consider the set

U = {h ∈ Hom(T`A1, T`A2)
GK |h is injective}

It is nonempty and open in Hom(T`A1, T`A2)
GK since it is given by det(h) 6= 0. Note that

Hom(A1, A2) ⊆ Z` ⊗Hom(A1, A2) ∼= Hom(T`A1, T`A2)
GK

is dense, it intersects with U , and then there exists f ∈ Hom(A1, A2) such that T`f is in U , i.e.,
is injective. Note that f is of finite type. Consider the kernel B = Ker(f), it is a closed subgroup
scheme of A1, the reduced closed subscheme B0

red is a sub-Abelian variety of A1. This Abelian
variety is 0 since its Tate module is 0. This means Ker(f) is finite. Then f is an isogeny. ■

1.4 Shafarevich conjecture

In this section we prove [Sha2].

We first prove an “isogenous version” without the “polarized condition”.
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Theorem 1.4.1. There are only finitely many isogenous classes of Abelian varieties over K of
dimension g with good reduction outside S.

To prove this, by 1.3.13 and [Ta1], it suffices to prove the following finiteness theorem for
semi-simple representations.

Theorem 1.4.2 (Finiteness for semi-simple representations). Let d = 2g be a positive integer.
For any v /∈ S, let Zv ⊆ Q` be a finite set. Then up to isomorphism, there exists only finite
d-dimensional semi-simple representations of GK over Q`, unramified outside S, and such that for
v /∈ S the trace of Frobv lies in Zv.

Note that if A has good reduciton at v, let Av be the model over OK,v, then Neron-Ogg-
Shafarevich criterion implies that T`(A) is isomorphic to T`(Av ×OK,v

Fv) as GK-representations,
which can be found in this paper about the criterion. If this theorem holds true, since the Weil
conjecture holds true for Abelian varieties (see van der Geer’s book), the characteristic polynomial
of Frobv on T`(Av ×OK,v

Fv) has coefficients in Z and its roots are all Weil-numbers. Thus the
trace of Frobv, which is the coefficient of t1, is bounded. Hence Zv can be chosen.

Now we prove the finiteness theorem for the semi-simple representations.

Proof. The main idea is to construct a finite set of places S′, such that if trρ(Frobv) = trρ′(Frobv)

for all v ∈ S′, then ρ and ρ′ are isomorphic as GK-representations.

For a representation ρ : GK → Aut(V ), where V is a Q`-vector space with dimension d, choose
a GK-stable Z`-lattice T .

Let M be the sub-Z`-algebra of EndZℓ
(T )× EndZℓ

(T ′) spanned by the image of GK . M is of
rank ≤ 2d2.

We then have a natural homomorphism

GK →M∗ → (M/`M)∗

By Nakayama’s lemma, any set of generators of M/`M generates M over Z`.

As a F`-algebra, we have |(M/`M)| ≤ `dimR. The representation GK → (M/`M)∗ must factor
through GK/H ↪→ (M/`M)× where H is a closed subgroup, and then GK/H = Gal(K ′/K) for
some extension K ′ with degree ≤ `2d

2 and is unramified outside S and `.

Now we construct S′. Let K1 be the composite of all field extensions K ′/K which satisfy
[K ′ : K] ≤ `2d

2 and is unramified outside S ∪ {`}. A consequence of Minkowski’s theorem
says K1/K is finite. By Chebotarev’s result, we can choose finitely many Frobenius elements
Frobv1 , · · · ,Frobvr for v1, · · · , vr /∈ S ∪ {`}, such that they represent all the conjugacy classes in
Gal(K1/K). Let S′ be the set {v1, · · · , vr}. This set does not depend on ρ and ρ′.

Note that by the construction, GK → (M/`M)× factors through Gal(K1/K), and the set
{ρ(Frobv)|v ∈ S′} covers the image of GK in (M/`M)∗.

If tr(ρ(Frobv)) = tr(ρ′(Frobv)) for all v ∈ S′, then for all g,

tr(ρ(g)) ≡ tr(ρ′(g)) mod `
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Thus, let p1 :M → EndZℓ
(T ) be the projection, and define p2 similarly, then tr(p1(m)) = tr(p2(m))

for all m ∈M . Choose a set of generators of M/`M over F`, and choose a lift in M , Nakayama’s
lemma tells me they generates M as Z`-module. Hence for any m ∈M ,

tr(p1(m)) = tr(p2(m))

Then for any g ∈ GK ,
tr(ρ(g)) = tr(ρ′(g))

This means ρ is isomorphic to ρ′.

Thus, the number of semi-simple representations of GK satisfying the theorem statements is
not more than

∏
v∈S′ |Zv|. ■

Back to the proof of [Sha2].

We first do a reduction: by 1.1.3 and 1.1.4, it suffices to prove for the case d = 1, i.e., for
principally polarized Abelian varieties. From this, we need not assume any polarized condition in
the original statement.

By 1.4.1, it suffices to show that every isogeny class has finitely many Abelian varieties up to
isomorphism.

By the last part of 1.2.20 (or see Poonen’s book section 4.5), we know that for an Abelian
variety X over a field K with a finite Galois extension L/K, there are finite Abelian varieties B
over K up to isomorphism such that B ×K L ∼= A ×K L. Hence, it is convenient that we change
the base field K to a bigger one such that A has semistable reduction.

In a word, it remains to show the following theorem.

Theorem 1.4.3. Fix an g-dimensional Abelian variety A over K with a principal polarization
λ. Assume that A has good reduction outside S and has semistable reduction everywhere. Then
there are finitely many principally polarized Abelian varieties (B, λ′) over K such that there exists
an isogeny φ : (B, λ′) → (A, λ).

Now we prove this theorem.

We can view φ as an isogeny φ : N(B)0 → N(A)0 between the connected components of their
Neron models. Let G be its kernel. We will reuse the height formula 1.3.3.

First we can control the degree of φ.

Lemma 1.4.4. Suppose B is isogenous to A. Further assume that there are isomorphisms

φ` : T`B ∼= T`A

for all ` ∈ N as Z`[GK ]-modules. Let N be a finite set of prime numbers. Then there exists an
isogeny

φ : B → A

of degree prime to all elements in N . If φ satisfies this property, we shall denote this by
(deg(φ), N) = 1.
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Proof. Note that

Hom(B,A)⊗

(⊕
`∈N

Z`

)
∼=
⊕
`∈N

HomZℓ
(T`B, T`A)

GK

Let ψ = (ψ`)`∈N =
∑
fi ⊗ (a`,i)`∈N be the element in the left hand corresponding to (φ`)`∈N in

the right hand.

Choose bi ∈ Z such that bi ≡ a`(mod b), and let ϕ =
∑
fibi. Then the `-coordinate of

ψ− (ϕ)`∈N is a multiple of `. Write ψ− (ϕ)`∈N = (ϕ`)`∈N . Note that T` sends ψ` to φ`, the kernel
of ψ` and then of ϕ is finite. Then ϕ is an isogeny.

It remains to show that (degϕ,N) = 1. Suppose ` ∈ N satisfies `| degϕ. Then B[`] ∩Ker(ϕ)

has an element x other than 0. Hence

ψ`(x) = ϕ(x) + ϕ`(x) = 0

and therefore
φ`(x) = T`(ψ`)(x) = 0

Since φ` is an isomorphism, x = 0, a contradiction. ■

Lemma 1.4.5. There are only finitely many isomorphism classes of Z`[GK ]-invariant lattices in
T`(A)⊗Zℓ

Q`.

Proof. This is Jordan-Zassenhaus theorem. ■

Proposition 1.4.6. There exist an integer n ≥ 1 depending only on N and A1, · · · , An which
are isogeous to A, such that for any B isogenous to A, there exists i = i(B) such that there is an
isogeny

φ : B → Ai

with (deg(φ), N) = 1.

Proof. This proposition follows from the above two lemmas immediately. ■

Now we come to the main step.

Theorem 1.4.7. Let A be a principally polarized Abelian variety over K with semi-stable re-
duction. Then there exists a finite set N of prime numbers, depending on A, such that, for any
isogeny ϕ : B → A with (deg(ϕ), N) = 1, then

h(B) = h(A)

If this theorem holds, then

{h(B)| B is isogenous to A} = {h(A1), · · · , h(An)}

Therefore 1.4.3 holds true.
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Proof. Choose two different prime number p and ` such that K/Q is unramified at p and `, in
addition for each place v|p` the Abelian variety A has good reduction at v.

For each 1 ≤ h ≤ 2g · [K : Q], we define the polynomials

Ph(T ) = det

(
T · id− Frobp|

h∧
Ind

GQ
GK
T`(A)

)

Indeed, the representation Ind
GQ
GK
T`B is the Tate module of the Weil restriction ResK/QB.

Then the polynomials are exactly the character polynomials of Frobp on an Abelian variety over
Q. Then every Ph has integral coefficients and has roots with absolute values equal to ph/2. Also,
these polynomials do not depend on the prime `.

Define N as follows: A prime number p′ is in N if one of the following conditions is satisfied

(i) p′ ∈ {2, p}.

(ii) K/Q is ramified at p′.

(iii) there exists some places v|p′ such that the Abelian variety A has bad reduction at v.

(iv) for h ∈ [0, 2g[K : Q]] and j ∈ [0, g[K : Q]] such that j 6= h

2
the prime p′ divides one of the

numbers Ph(±pj).

Note that N does not depend on `. We may choose ` in the following sense.

Let φ : B → A be an isogeny such that (deg φ,N) = 1. By factorizing φ we may assume that
deg φ = `n. Let Ker(φ) = G, then `n ·G = 0.

We can construct a new isogeny

B → B/Ker(G[`]) → B/Ker(G[`2]) → · · · → B/Ker(G[`n]) ∼= A

where B/G[`i] denote the categorical quotient for the action induced by G[`i] → B. Hence we
may assume that G[`] = G, i.e., ` kills G.

Let χ` be the `-adic cyclotomic character.

Let V be the F`-representation T`(B)/`T`(B). Let W be the representation Ind
GQ
GK
V . Note

that G ⊆ V . Let U = Ind
GQ
GK
G. Consider the representation χ : det(G) → (Z/`Z)∗ and χ0 :

det(U) → (Z/`Z)∗.

The semi-stable condition implies Iv acts on G as unipotent action. Hence det(G) is trivial.
Hence, det(g) acts as ε : GQ → GQ/GK → {±1}, which is the sign character. Then χ0 = χε.
This is unramified outside `. By the Kronecker-Weber theorem, χ must be a power of the `-adic
cyclotomic character. Say χd

` .

Then by mod `, χ0(Frobp) = ±pd. But it is a zero of Ph for h = n[K : Q]. Then `|Ph(±pd).

Then d =
[n · [K : Q]]

2
.

A theory of Raynaud states that |s∗(Ω1
G/OK

)| = `d. Then

h(A)− h(B) = 0

■
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1.5. PROOF OF [MOR]

1.5 Proof of [Mor]

I gave up, see Milne’s note for details. Maybe someday I will resume this note.
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